![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
§2 曲线的曲率与挠率,弗雷奈公式
曲率描述曲线弯曲的程度.挠率描述曲线偏离平面的程度——挠曲的程度。这两个量对于描述曲线的形状来说,具有决定性的意义。
2.a几个引理
为了以下讨论方便,我们先介绍几个涉及向量值函数导数的引理.
引理1 对于可导的向量值函数r1(t)和r2(t),我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0066.jpg?sign=1739459441-GSsDH9FZl5XwVOH18yjMrQr0mtRgPO4y-0-08d59491391950934d7124de573f8367)
证明 用坐标分量表示(r1(t),r2(t)),然后再利用数值函数的求导法则.请读者自己补充证明的细节.□
引理2 向量值函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0067.jpg?sign=1739459441-x2K2WIfTJ3trr0KyP6uBCRJWRt9yXZHv-0-e3fdee30f7231cfe93984840647c5d5c)
保持定长的充分必要条件是:r'与互相垂直,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0068.jpg?sign=1739459441-21VaVk4Ltta0BVt1BeSMuP6jvscuOKI3-0-d23f8bbf28c909c192249403fc37c5e6)
证明 我们约定记r2(t)=(r(t),r(t)。显然有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0069.jpg?sign=1739459441-6ZT7hXoRqd5pr7BGhEXWaL37JajuyYVW-0-cd06c04f8eaf9d5555812c88f646b565)
根据引理1,又有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0070.jpg?sign=1739459441-YO5Ne3qhLHfLH8x8I6YX32q8W04vgxxU-0-8df077dc4729330605bb881f777ed3a2)
由此就可得出所要证明的结论.□
引理3 设是单位长向量:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0071.jpg?sign=1739459441-zp9CwlyuBdDeLky6NCwhmdVnVdT6w9kr-0-7078e54fb6e2829d3f9d8280c896d34e)
则r'(t)在与r(t)正交的方向上,它的模||r'(s)||表示向量r(t)转动的角度相对于参数t的变化率.
证明 我们用表示从向量r(t)到向量r(t+△t)的转角(图14-1),则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0072.jpg?sign=1739459441-T6THTJY8L1GbjOgzaU9zf73VObqUJixg-0-9cb3e4dada2f91414337e36689504da8)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0073.jpg?sign=1739459441-zqdJ21x4BV7RvgjJic4UJ8BRpQ53zlY2-0-91b1502f6660d05b467aa62c10bd459c)
图14-1
于是有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0074.jpg?sign=1739459441-pMwpfwo1vuL8eqNaL3p22D8hLunu3bOE-0-fc66ae88e523a0f0a8f0b5467341155e)
2.b自然参数,曲率
考查曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0075.jpg?sign=1739459441-LjkTNTz3pIVOiH0pEIKLsKxrq7pXT5P9-0-5ba4f97b08c4e5957f07cf9414ccf3d1)
这里假设连续可微足够多次,并且满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0076.jpg?sign=1739459441-ltUveQLbB1VZM6ejZV2LyKm76AW2XCi8-0-f26102653e709db69544996cc6e2e6e4)
曲线(2.1)的弧长可按下式计算
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0077.jpg?sign=1739459441-FEnnNTNaexmBQJ2Q6w08tN9DOd4IZ3zH-0-d4e65297f2f16bb5bf8f697243b7c413)
这里的t0是量测起始点的参数值.因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0078.jpg?sign=1739459441-5Q9PovLGD9THZ0i2imLjtRUQMgmwG3yQ-0-aab602fe03ac619c55748574e5f5822f)
根据反函数定理,可以断定t是s的连续可微足够多次的函数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0079.jpg?sign=1739459441-xAqpH1uKIZrdUGFjnsGckRHtzDmCJqhR-0-a2a1f13dedd96b7f3728c6e46f03b80e)
于是,可以用弧长作为曲线的参数,把(2.1)式改写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0080.jpg?sign=1739459441-6AilVDjEs0LYOQD58rRoOOOa1dU8OoqC-0-7f38902a69eadc483982817616b59eb8)
以下,我们把弧长参数s叫做自然参数.为避免记号繁琐,对于不致于混淆的情形,就简单地把(2.3)式写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0081.jpg?sign=1739459441-yu4GlMN9WYNrVsLsvdNZESt0yDIWc7Hw-0-60583ecba3fd14d3db30334e81cdfdd3)
在本章中,我们约定用圆黑点“·”表示对弧长参数求导.于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0082.jpg?sign=1739459441-nMBKCZppooFDVmOqCu1vdpqg0AgVSsG4-0-5307c2fa7a50d56cc9881302f333dc0c)
由此得知,r是一个单位长向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0083.jpg?sign=1739459441-UHMenu0iyHaEDUlQNSRjCEecECOOpaqQ-0-40d8b87dcbe7107e034caff2d1e7c4a5)
于是,r(s)是曲线(2.4)在r(s)处的单位长切向量.我们约定用记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0084.jpg?sign=1739459441-wzeHLE3loTLlHd6rHzaa6WanPWD7g5HN-0-b2feda7041cfb6f5e745d57035644a9a)
表示这单位长切向量。
请注意,为了讨论方便,我们约定把切向量看成自由向量,因而可以把各切向量的起点都移到坐标原点.读者以后逐渐能体会到这种看法的好处.
将T(S)=再对s求导,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0086.jpg?sign=1739459441-wIGEwGsB8LhJvK8A0Tpbzl3GN9dEYm5n-0-8cd70a8cf924c5f251de71c6ff2fb428)
既然T(s)=是单位长切向量,那么向量
就在与T(S)正交的方向上,并且
表示切向量T(S)对弧长S的转动速率
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0090.jpg?sign=1739459441-rmPs0DHKcVtvfWoohHjakdrO6QraYEX4-0-f149942cf1dbe83474f766aa214c7c5c)
——请参看图14-2.
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0091.jpg?sign=1739459441-UHgCJUlA522wTBQYdu9okaYZhjykGQj6-0-0d2292d30ac4efb669f3f44a19c3861c)
图14-2
我们把切向量T(s)相对于弧长s的转动速率叫做曲线(2.4)在给定点的曲率,并把它记为k(s)于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0093.jpg?sign=1739459441-Pa7ZXh3cUHpe9YaOKv6rSl6uO2rihWxo-0-24c89d6b89f6722cd1c7861cdddb7adf)
曲率K(s)的倒数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0094.jpg?sign=1739459441-XkKn16SUf97WE3OJNTg7VDEEGr9ULJRi-0-8450ca821e9f1c5e55369fb28074ec56)
被称为曲率半径。与κ(S)一样,曲率半径ρ(S)也表示曲线弯曲的程度。只不过ρ(S)越小表示曲线弯曲得越厉害。对于κ(s)=0的情形,我们约定ρ(S)=+∞。
例1 考查圆周的方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0095.jpg?sign=1739459441-uhxamI0v79M6hYSYdPQlA7P9GOb3aBr3-0-108aaa391e5dbb1105f85526d0858e2e)
换成弧长参数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0096.jpg?sign=1739459441-ehxVIXK9tenS6BFZZY0Ysbwp3ziVYfEM-0-1143d651559b2e27e8eedd83698f6a3f)
圆周的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0097.jpg?sign=1739459441-is1q32bjjhX4KYdC6A9wpbMPFjW60nxj-0-b590abbd5d5cb495bdadebc63bf5cc32)
利用以弧长为参数的方程,容易求得曲率k和曲率半径p:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0098.jpg?sign=1739459441-4MnVo38I3fKd5xOUPR7YeRGqCJOfnr18-0-62db616242c33816428daaaa8959b622)
例2 某段曲线为直线段的充分必要条件是:在这段曲线上曲率处处为0,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0099.jpg?sign=1739459441-MH0eOnxPx1Dl9pvCZcNuwqcZzp8ne61u-0-2dc2f480e56ca13585de3f2aeadf1841)
证明 如果某段曲线为直线段,那么这段曲线以弧长为参数的方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0100.jpg?sign=1739459441-jGbtHlQAEkSbays3SRKT66au4z7dAUGT-0-fb9d828a2852339179e50a47930dda10)
这里e是长度为1的常向量.将上面的方程微分两次就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0101.jpg?sign=1739459441-GtFVSxUC9zqLqKx2EIU9HYe1sRglibDu-0-bbdc17ae18da72dba96a59d89287f4c4)
因而
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0102.jpg?sign=1739459441-aYAQwD6MK89fhQ25Lui5NNzft1AOaD6t-0-f517304ef2a34390119722ded8fe82a7)
这证明了条件的必要性.
再来证明条件的充分性.假设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0103.jpg?sign=1739459441-MdKEZ9og1S8dMiWG1IvE6DIVBrWeYu7q-0-e903e9194a4828d8c9848c2390ba53e7)
则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0104.jpg?sign=1739459441-XHE8qZKpP0kY7bFd4wvAryVueOTLTewb-0-d7aa8a6e04efa2274c745bcc4d4ae1ca)
于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0105.jpg?sign=1739459441-49qU364SBkMxcVcsdqG6uQdT7xV4NPtN-0-5dfbd6665f05c6372b0caa5331702c2c)
由此又得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0106.jpg?sign=1739459441-AvcJn3WHRZnWuIcuAYRxmadKOWuuhn0H-0-b41310de916608ce06df06b9a229a408)
这证明了条件的充分性.□
2.C弗雷奈标架,挠率
曲线上曲率等于0的点被称为平直点.我们来考查不含平直点的一段曲线.在这段曲线上
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0107.jpg?sign=1739459441-8vCcbDksjqKz1gaGvLGvkPqCPA26t1fd-0-606dd64521228e6f1c6bbf509d12293d)
所以可以定义
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0108.jpg?sign=1739459441-V40zcBYHvja5XtWwjqUoM5t9s8WONzka-0-414a420d913a6a198c924c766be8108a)
这是正交于T(s)的一个单位长向量,我们把它叫做曲线在给定点的主法线向量.利用切向量T(s)和主法线向量N(S),又可作出第三个向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0109.jpg?sign=1739459441-ShstM5gybTMXuUBJvNh6WSz0HfQaUWqQ-0-7fb6b8a6e003e689461c7e0287a97264)
因为T(s)与N(s)是互相正交的单位向量,所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0110.jpg?sign=1739459441-C9mGAdfwBbJCJrsprnJBVQaCQpRAd4rf-0-0d36f48e28f5a7b94310156e822e41cf)
由此可知:B(s)是与T(s)和N(S)都正交的单位向量.我们把B(s)叫做曲线在给定点的副法线向量.在曲线上的给定点,由切向量T(s)与主法线向量N(s)决定的平面,叫做曲线在这点的密切平面;由切向量T(s)与副法线向量B(s)决定的平面,叫做曲线在这点的从切平面;由主法线向量N(s)与副法线向量决定的平面,叫做曲线在这点的法平面.
这样,在曲线的每一个非平直点,我们建立了一个规范正交标架{T(s),N(s),B(s)}这标架被称为弗雷奈(Frenet)标架.由这标架决定的三面形被称为基本三面形.
当点沿着曲线运动时,弗雷奈标架也随着运动(像这样的标架被称为活动标架).我们需要考查弗雷奈标架运动的状况.先证明一个引理.
引理4 设e1(t),e2(t),e3(t)是向量值函数,对每一参数值t它们都组成一个规范正交标架{e1(t),e2(t),e3(t)}.如果将
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0111.jpg?sign=1739459441-m0xXxsx0MuJo5R12IXFYTQ4bZDRLl3Wp-0-1840c256daae87c4820e884b92dc2a95)
按这标架展开
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0112.jpg?sign=1739459441-GDrVAvKD3qTw8zgPAuidy3md3v5wWdxr-0-4b00b3eb8da7dfa405c24aa3c5b9d29b)
那么展开的系数应是反对称的,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0113.jpg?sign=1739459441-5meWiNgTbxFm9s3tyVithqPRSulKGEv9-0-4492b34c48fa4fa3305b0460c2ebea80)
由此可知
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0114.jpg?sign=1739459441-EtiYkzhJ6Hqf6gdW3raqLSfcaZnyItvG-0-5023b290c5dbf6317e309686e5fd8ef5)
证明 我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0115.jpg?sign=1739459441-FMDkNz5JV5HewLrVbvMLtSfFek32reTd-0-8ba842ed8671507158b2c798f708c759)
将这式对t求导得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0116.jpg?sign=1739459441-CzmOHLlxl9h0WghRFnCD7UdGYIalR8kA-0-4ae25c239999bfdab64d839034d1b0c2)
这就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0117.jpg?sign=1739459441-d9HrtKp5Yt4h5SBbygkqzvoaJy78n5Hc-0-3794f99e4a7f0d5079d72676b010c4be)
定理 对于曲线的弗雷奈标架
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0118.jpg?sign=1739459441-n89lHVVf7iU7kaW2UQ7q16m6gwx6lSTw-0-5097823cc1585fd1d6a87f495058041b)
我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0119.jpg?sign=1739459441-ZVNowG9LV3syyHPuOWhoZacjVTILjG27-0-5180edc398663305c605d7c91c79dbf5)
这里k=k(s)是曲线在给定点的曲率.
证明 对于标架{T(s),N(s),B(s)}用上面的引理就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0120.jpg?sign=1739459441-Wl6stQv4QYAybjxW1wPwRDUwKv9Qr0Uw-0-64b64c7d26cee7d709de4d26ddbe3a46)
但我们知道
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0121.jpg?sign=1739459441-1i91gUVgGhwsb3I1Iam1x6SpGiGDysvE-0-4b7eaefa3fe0a074b1bd49eb422c9ce4)
所以有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0122.jpg?sign=1739459441-xvjoTeRzZsvhuySflj377UHo7CKNDKPc-0-04754d02acc1b761df15fd87c0da9d47)
我们记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0123.jpg?sign=1739459441-hTANmnlRQfqZbM4PInLB0y8fW2Ph6wuJ-0-deb854c8047d9cd5814f31ccd0e69fc3)
于是就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0124.jpg?sign=1739459441-mXX9yAhWBuriQOpRYZB1ngiXKnUZOifl-0-75e53ec9fc356aaea2bd921981e03713)
上面定理中所给出的公式被称为弗雷奈公式.该公式中的系数τ被称为曲线在给定点的挠率.下面,我们来说明挠率τ的几何意义.
引理5 设r(t)是一个n阶连续可微的向量值函数,则有以下的泰勒展式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0125.jpg?sign=1739459441-af7Ty7GR5SdTr6iQ7eVEbxwjB159MQ4o-0-5fb81edcf9daac5ba0e6249c235992f1)
其中的Rn+1(t)满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0126.jpg?sign=1739459441-tH7lKilD78tM4ZhghxXPlzK2ysSouKTF-0-aab444bbc58de16768888c143fe3e70b)
我们还可以把r(t)的泰勒展式写成如下形式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0127.jpg?sign=1739459441-bIyNddLlYMZ7UXsPDqyJlTxNPqBmRW9U-0-6048f67f5e029e81618ac583f5272c00)
这里的小o余项表示满足条件(2.5)的向量值函数Rn+1(t).
证明 设r(t)=x(t)i+y(t)j+z(t)k.将r(t)的各分量按照带拉格朗日余项的泰勒公式展开就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0128.jpg?sign=1739459441-eJk21HrF4hSA1PCnosKzqdVc5p2saum4-0-e9651ccac36c2edc605b10ab932506b1)
若记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0129.jpg?sign=1739459441-QOLoaREkWxUAO6jr9h5GIA1DT4bq71cy-0-61bf9ead914cd00d02b00972afd5d50e)
则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0130.jpg?sign=1739459441-HZSDonAELPAgglJ9ad2dMTRL6lYZDfgc-0-ae4736858f7f4ef271e05e60e214f682)
利用x(n),y(n)和z(n)(t)的连续性就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0131.jpg?sign=1739459441-yKTUOX3XjkZFNGbhxfeNEzDbzz18w089-0-36e215e780157084a7800a11d874c6f2)
对于用自然参数表示的曲线r=r(s),利用上面的引理可以得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0132.jpg?sign=1739459441-oRU28MsHNlKDPCoLYF5ouMNWSpi1uXcV-0-9a22cbbd3e9947d7259e1d67cbaf5964)
按照定义,切向量T(s0)与主法线向量N(s0)张成曲线在给定点的密切平面Ⅱ0.因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0133.jpg?sign=1739459441-mwDWwb8UOCLtTkF8UcLgvH066WkyUHjE-0-18777f99082bd0d090806735d98e21fd)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0134.jpg?sign=1739459441-H8AOvLfa3HkTmz7TewfqnpI3SxAQKTYg-0-0ef5c36da2b2e61da739a7b114789e67)
是在密切平面Ⅱ0上的点.我们看到,在给定点邻近,曲线离密切平面Ⅱ0的距离是高于二阶的无穷小量.在这个意义上,我们说:密切平面Ⅱ0是在给定点与曲线贴合得最紧密的一张平面.在曲线上任何一点,副法线向量是该点密切平面的法线,而这样,我们了解到挠率τ的几何意义:|τ|表示副法线向量B相对于弧长的转动速率,也就是密切平面相对于弧长的转动速率.因此,τ表示了曲线挠曲的程度(偏离平面曲线的程度).
例3 设某段曲线r=r(s)上没有平直点,则这段曲线为平面曲线的充分必要条件是:在这段曲线上挠率处处为0,即τ=0.
证明 先证条件的必要性.设某段曲线r=r(s)在平面Ⅱ上,则
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0136.jpg?sign=1739459441-zN18gGs80JQZoXrqaXBELw2g6q7s2TOB-0-e406bf73b2908c6c115287778adf93e7)
都在这平面上,于是B=T×N是常向量(垂直于平面Ⅱ的单位向量),因而
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0137.jpg?sign=1739459441-za9PTct9SpOOpikx9e7mMKNNp2dg6Lrs-0-816e0da07b85a902a34e4f1177a4e543)
再来证明条件的充分性.设挠率则
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0138.jpg?sign=1739459441-h2LBmwRkagZRZsOR0gMrYYc8K4CslipC-0-140160d4537300ea8af1b716ff0f9600)
因而B是一个常向量.考查函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0139.jpg?sign=1739459441-ROdjEw6zL6ReMYLsxq1ZJRCh7figZR8q-0-907f9fa3c12300072f887a78e92e78e3)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0140.jpg?sign=1739459441-Fm0VhSoYzypmNBLoJ5BCRBbTPlTwLKFq-0-bfa247c7e0090062b7c74766e0578fef)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0141.jpg?sign=1739459441-cu5iDzWE8qg3Wvw4UwfjTji9X8EYOOAT-0-cc8fed1b432e7ddab8376f4d79cf01ae)
我们看到:曲线r=r(s)在平面
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0142.jpg?sign=1739459441-p3PqX4X7b034kTcSdHUWwpOC2iPhbQqq-0-d3e83b40a00549e6c9d9dd1bfdc4b434)
之上.□
推论对于平面曲线r=r(s),弗雷奈公式可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0143.jpg?sign=1739459441-kjudtLDYAH0mDQb88TTnoNBjRRZ007S3-0-d46dd7f2996c112675fe30ca49e62d7f)
2.d曲率与挠率的计算公式
如果曲线方程以弧长作为参数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0144.jpg?sign=1739459441-zZ2EL9YFIWif0RrXqwOzRDBAHjd1b8Ep-0-4ab7863a9236e103ad412fe5cdd105d0)
那么曲率与挠率的计算都比较简单.将r(s)对弧长参数s求导并利用弗雷奈公式整理求导的结果,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0145.jpg?sign=1739459441-PHlPxMhagBqh4s6oHGt0Xp9puITEqxpX-0-72765c4f0856a7429c127c13e916b7b6)
由此可得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0146.jpg?sign=1739459441-aw3PxjQogqd3RdZGvm6jfDqirhiLyEdZ-0-1684ef373846b9f64e75f69f4817b325)
在这里,我们用记号(u,v,w)表示向量u,v和w的混合积:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0147.jpg?sign=1739459441-Q6wEfKxfIz95MX4RoamyhlyqcJZIvTL8-0-9f2e8902ca22853b3791ecd8329270f8)
对于更一般的参数,我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0148.jpg?sign=1739459441-POaj6iFB1h1638NpAlorJplsmB7mPtmL-0-182c00e7a2c6d5b753ab86b73419620a)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0149.jpg?sign=1739459441-dL9vtTMrGec68YRsydYAlRzwCaNCwVxf-0-6555d5bd3dba570950fd31b681d3c2df)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0150.jpg?sign=1739459441-F5mLskrylkVpXp06U3wEek8c1X2m3V12-0-b7a38c0b5596ba8291ae16cd1f4fac67)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0151.jpg?sign=1739459441-YTfhRo9h1raYXUmTx4nl0AiudkLnv29J-0-f001a0ac4b2e8c818d7c77f8909f3550)
于是,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0152.jpg?sign=1739459441-SxXuyYozU10Gg71iXoZMp3BIls6xY0GE-0-096bd7a4216c671a183ddb4694ebaf30)
由此得到一般参数曲线的曲率与挠率的计算公式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0153.jpg?sign=1739459441-LtmrBwXK0ye2GDyEzt28eHBwhrYEuebJ-0-1c499c447f2f75df5ee76dfa9482e505)
2.e关于曲线运动的讨论
最后,我们利用本节得到的结果,考查质点的曲线运动.设运动质点的轨迹是曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0154.jpg?sign=1739459441-1HJFaoYjEiwscWlx6AUKjr0TyWIwT0cI-0-81224b01fe0e54f6339fe3160ceb1309)
这里的参数t是时间.将r(t)对时间参数t求导,就可求得运动的速度与加速度.运动的速度为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0155.jpg?sign=1739459441-NmSunQ0ze222iVs8NMd1NkDh3leW6rjP-0-9cf7a65f45bc1bf224e9ef87de94246d)
这里
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0156.jpg?sign=1739459441-YOsJLYu2kuB1uf6z9mTr0WmCpT1RGnPW-0-5c9147a299089704fb5ea399f7f9d431)
是速度的数值——路程对时间的导数.运动的加速度为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0157.jpg?sign=1739459441-JnqlqIyOSjmINMqxgRS9DInuOaI7I8Zx-0-9b3c2f6d182ff07e6d8c38010a32cb51)
这里k是运动轨迹的曲率ρ是曲率半径.
我们看到,运动的速度沿着轨迹曲线的切线方向,其数值等于ds/dt;运动的加速度分解为两个分量一切向加速度与法向加速度.切向加速度沿运动轨迹的切线方向,其数值为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0158.jpg?sign=1739459441-gPmPgDNX5jH4L2mqXZnK9adZtacM1YP6-0-5bb7ea2d6a49b125888f1c7535102804)
法向加速度沿运动轨迹的主法线方向,其数值与速度的平方成正比,与曲率半径成反比:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0159.jpg?sign=1739459441-z1BVzVhkrf0yG9dRClSVYlqsBoTdrK4V-0-db78712cbc6656e16c5160d1c0320ef0)