![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
§1 曲线的切线与曲面的切平面
l.a曲线的切线
考查R3中的一条参数曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0005_0004.jpg?sign=1739460582-qq8OQERsjgK3D5j1zH05py3Dr3vk1eAn-0-2337cc3e1e7c388fe33b34c68788e9a5)
在这里,我们假设函数x(t),页(t)和Z(t)都在区间J连续可微并且满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0005_0005.jpg?sign=1739460582-qiydI3Lin2hIl7vBsGsWv9Dl1jM6jb02-0-b865d4fe88d15ba0901271808c448f50)
如果把从原点(0,0,0)到点(x,y,z)的向径记为r,那么参数方程(1.1)1可以写成更紧凑的形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0005_0006.jpg?sign=1739460582-FtssqHdZxfFvyKzjek7RIOOaTl01dfLh-0-c2dfa77a35aef60e5964ce74d48b199d)
这里r(t)=(x(t),y(t),z(t)),是连续可微的向量值函数,它满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0005_0007.jpg?sign=1739460582-g9Gj9aFxUVMA3OmH30aO8YIjKPnndvRO-0-fd146b6e174668333cd131e3d36318d1)
当然,(1.l)l与相应的(1.1)2本来是一回事.在以下引用时,我们就不再加以区别了,都编号为(1.1).同时,也就把(1.2)1和(1.2)2都编号为(1.2)。
设P0是曲线(1.1)上的一个定点(其向径=r(t0)),而P
是同一曲线上的一个动点(其向径=r(t)).我们来考查沿着割
线P0 P方向的向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0005_0010.jpg?sign=1739460582-dYtaqx6nd2aSY7BytxJ5guFFX9PkcvRx-0-2eee271b1bd7471332e42795d144226b)
当t→t0时,割线P0P的极限位置应是曲线在p0点的切线.这样,我们求得曲线在给定点沿切线方向的一个向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0011.jpg?sign=1739460582-NDWbLoW64KFMKmkSln5vpHG8WeJaj9FQ-0-75db8ec0053eb64d1cbea4b71b47c4a6)
于是,曲线(1.1)在P0点的切线方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0012.jpg?sign=1739460582-gw1hI85JzFHJrlrUFz8dQifQRrbILVJ9-0-3b960ed48c8a03a69af4c9de40441ef5)
这里x0=x(t0),y0=y(t0),z0=z(t0).
显式表示的线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0013.jpg?sign=1739460582-23uuQmqfcbyoilVGtG6NjHwnhNbTfCM3-0-84c448401178491c254c920041a2fbab)
可以看作参数曲线的特殊情形——以工作为参数的情形;
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0014.jpg?sign=1739460582-zwXxTqw3VzbfafQCSEgt3d1rO0pF7gEE-0-f340ed2082c7b2b0af650ff0b72418da)
对这种情形,切线的方程可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0015.jpg?sign=1739460582-A4kDZ1wnWDipL0TyTwGdDXJYpiY7QcrO-0-0bb9de136bef4591f3bbd53787c8b568)
或者
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0016.jpg?sign=1739460582-JwZAEIVIdLfybUkrHiv5olUhJFww6PoK-0-42267586eb185a8b504c679ef6278fee)
这里y0=y(x0)z0=z(x0).
再来看由隐式给出的曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0017.jpg?sign=1739460582-jjTdA03qduYTlSc1Z6XbLQyGg1XTGKN9-0-47305e99c5f4ff71ca9147315333b208)
这里假设F和G都是连续可微函数,并且
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0018.jpg?sign=1739460582-mtwGR0vRkOiQr9hU89ZicPx0yceupz6d-0-f5a87c3aaed928d387eff972fd76c7c9)
于是,在曲线(1.7)的每一个点(x0,y0,z0)邻近,我们总可以解出某两个变元作为第三个变元的函数。这样把曲线的方程写成显式形式,然后套用(1.6)或者(1.6)'写出切线方程。但以下的讨论更有启发性:我们来考查方程组(1.7)在点P0(x0,y0,z0)邻近的一个参数解
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0019.jpg?sign=1739460582-0t2gymT77g71bvzZL273nlK2bzYqnPd9-0-38f054a6fb578e2a09830f6c524f56a0)
——这样的参数解一定存在,因为显式解就是一种参数解.把参数解,x=x(t),y=y(t),z=z(t)代入(1.7),就得到恒式等式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0020.jpg?sign=1739460582-dxl6pUdfUawgxsGIXl75DRK4H4aeVh3q-0-26d3fdde43cc8bfda6e8487e4a3cc2b8)
在t=t0微分这些恒等式,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0021.jpg?sign=1739460582-JPQ8CPeFfY1e9LCJsQ04ycIOcP72S1aM-0-559ccead9f99404a8f61fc9b5b2b2cad)
我们介绍一个很有用的算子符号:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0022.jpg?sign=1739460582-9JRBH6paeDYSLfaGMVwQkYAWxjLmdUbS-0-9385d6dbb6f54e49a06b2e4ce697e4d3)
这里的i,j和k分别是OX轴正方向,OY轴正方向和OZ轴正方向上的单位向量.这样定义的算子▽,被称为奈布拉算子(或奈布拉算符)。在点P0处,奈布拉算子▽作用于一个可微的数值函数F(x,y,z)产生了一个向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0023.jpg?sign=1739460582-wjeJS77XnOdk82Yaubb88tUuKjXxujDX-0-6a5028207615450150b78c863cb8eab4)
利用奈布拉算子可以把(1.9)式改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0024.jpg?sign=1739460582-TCpkH179kJw0vVLckqioLo4Z92sE4Gjd-0-cb32fd966d17bb656dc76d4a45ec58d9)
这就是说,曲线(1.7)在点P0的切向量与两向量(▽F)p0和(▽G)p0正交.因而这切向量平行于
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0025.jpg?sign=1739460582-7O0zmZPZL2iMHMejrGDytpRjTLd1uCSg-0-00d0367b97b903ede922a3ef20405762)
据此,我们写出曲线(1.7)在点P0的切线方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0026.jpg?sign=1739460582-GkywkaGQfAbyKtk22ufleoT5hpLu4MSD-0-2bb617b1602f47135890838260d2b97c)
平面参数曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0027.jpg?sign=1739460582-EJORWs4doAtEL9tfyXOmtv22HHN0Ypiz-0-a1fd040906498355d437efffb297f980)
可以看作空间参数曲线的一种情形:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0028.jpg?sign=1739460582-k6eFEruXNjnNt4tZXxqxarfDb2j3YjTw-0-39ce9dc07a9d409ca8caf0d96f08fe89)
因而,平面参数曲线的切线方程可以写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0029.jpg?sign=1739460582-S3f7ubkuCXQmTJKXUX5U4yU7z9qRsVdA-0-b5d77aebd9bd854365bba3e233a7fd6f)
类似地,平面显式曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0030.jpg?sign=1739460582-P5pRm6JfvqnsmKeBy8UDNn32pguPumkK-0-8cbc9b4815f2b1ff44884238c09c3a62)
的切线方程为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0031.jpg?sign=1739460582-cYf1GaehtrgO3VljJO17MkjhNgYzWRtO-0-4c2a361bea903b08683498e8d813f3db)
——这结果当然是大家早已知道了的.
隐式表示的平面曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0032.jpg?sign=1739460582-lny8Qrtm1CpEjQxo2MZPmkrnK3nBQEiy-0-de0089c00e3dd5a7979a530aae804149)
可以看作这样的空间曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0033.jpg?sign=1739460582-rXkLX5ekQksWs7GgNVEwNECxEhKxhAmU-0-9f5408126a7798eaa08893858c407851)
这空间曲线在点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0034.jpg?sign=1739460582-yNxB9m5FTRX6hvHyQ7wKkeMUx4og3EFY-0-d8acb706e3ffa109f39869ebf356da1f)
的切线方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0035.jpg?sign=1739460582-E2PeWrbFFEhjhHWAHdqlaU2DcdoYwDsI-0-1d5ce078524e90e2b6d921c975148df2)
也就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0036.jpg?sign=1739460582-1pl1pLvRQgD59F3IGbMIXyTc3PEchRl0-0-0077754d9b447f8971648f1d04448c6d)
1.b曲面的切平面与法线
空间R3中的一块参数曲面表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0037.jpg?sign=1739460582-yDoaTzTt6kuxo7tFazxSDsDZvSXGUcgp-0-04824c836b3ba577e2dbde2d8a4eb304)
这里,设△是参数平面上的一个开区域,设x(u,v),y(u,v)和是在△中连续可微的函数,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0038.jpg?sign=1739460582-CvKkbJChpOI1vF7t5IeeWhxm1WOs5OAd-0-52592820ad39d5eae092f2cdf841a7df)
参数曲面块的方程(1.11)1又可写成向量形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0039.jpg?sign=1739460582-9PYN88Jpj1dzDYsdmOZHaXL4gEnghYJU-0-4a789c56e4a3478da94dadce7f23540d)
而条件(1.12)1意味着
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0040.jpg?sign=1739460582-2SSIAYC51IlAhDiQ4rlc5QE9GaQZqybe-0-5fb1142b07cec500e7310238195dd19b)
在下文中,提到(1.11)时,指的就是(1.11)1或者(1.11)2;提到(1.12)时,指的就是(1.12)1或者(1.12)2。
设P0是曲面(1.11)上指定的一个点,其坐标为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0041.jpg?sign=1739460582-8wZydhtqR1sBSTK0wd24Q6gZUp3fD19E-0-1e13f272075a6934ebfe5babd2f77563)
又设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0042.jpg?sign=1739460582-pkj3Jwh1BD7IekcK9ldHvfBecZMqT2md-0-6051cd5928adcc43d7bed149e6561464)
是参数区域△中的一条连续可微的曲线,它满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0043.jpg?sign=1739460582-EYOYIi26kOenCP4dZWLE8JsqvDSKtEl9-0-fb9bbccef7aa2ba8afed6cbc63217c49)
我们来考查曲面(1.11)上经过点P0。的连续可微曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0044.jpg?sign=1739460582-LmZrB0nxZNzx0wwBFfOI6Ri9cMerSH5x-0-8b8c9c92188454bd1e9225c867813ce7)
将上式对t求导,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0045.jpg?sign=1739460582-qshcyhinUXR0y41YhrMRPzvNS7rhOirE-0-0760527eb6b189f24306356b2fa75d28)
由此可知:任何一条这样的曲线,过点P0的切线都在同一张平面上.这平面通过点P0,并且平行于向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0046.jpg?sign=1739460582-cruT8KQsr9m4Qmi9srxHRPwF1Q5CkCLy-0-20ff9dfa1c0b711b2f81c12013569d74)
我们把这张平面叫做曲面(1.11)在点P0的切平面.切平面上任意一点P的向径
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0047.jpg?sign=1739460582-zQcLydU5aW33tALt1mK9MbSDDvWVbiij-0-f22c70d13e81bad5bb9d56c9df8a5429)
应满足向量方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0048.jpg?sign=1739460582-qWNKhV3b8xqEj3FBpD5kAdlkWsR9Dbv3-0-5a449ccb5533cf489e63a363701cdd00)
据此,我们写出切平面的方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0049.jpg?sign=1739460582-WMvrvFMSD9ODJoqiQIAwKNxfV6Ga5IGA-0-cbb0684170a1e5073cee4e49971269f4)
过切点并且与切平面正交的直线,称为曲面在这点的法线.根据上面的讨论,我们得知:法线的方向向量为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0050.jpg?sign=1739460582-BIb3qKXo6fbJR0tydDL1UWgdFHysdwhP-0-41f2a09f475d2f0ceb896af3725c6dc2)
因而,法线的方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0051.jpg?sign=1739460582-x3w88hFSafGz6FfcG9SPH7v6hzdC5MuV-0-26f42c6578924d3c8f465e4d0230c9db)
显式表示的连续可微曲面
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0052.jpg?sign=1739460582-nJ9gUd4Q0rr7cPDUapVbI3bw1NGIJQ0E-0-19def6f82f79011370c61d7ea0274afe)
可以看成以(x, y)为参数的参数曲面:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0053.jpg?sign=1739460582-mtsioMrc7numd08jN4PhiZyUO97JlsEl-0-535b1d70b1f82f0eb9fda30b3c142d7f)
这曲面过点P0(x0,y0,z0)的切平面的方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0054.jpg?sign=1739460582-PpKNPcQifNQ3xj1rzmiiOBIMKgOKUDEb-0-55ecd04b7dd23632d3d4f893df018002)
即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0055.jpg?sign=1739460582-LuaxAq9LjCN0G6gl8oQJiJTrLhJNi6Wa-0-ebcf3142c0a9d990b54cfe892923239d)
曲面(1.13)的过点P0的法线可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0056.jpg?sign=1739460582-mLjQf0Y3B5y0GniN4GLFRnKRiHPuzzkW-0-fbde6540c5d84dcdc2afe499b32db919)
再来考查隐式表示的曲面
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0057.jpg?sign=1739460582-GHiJsLHeWVcQKMtfLKiUisXvRc8ut5sF-0-9134dd3e11a76a011bd3ba58bbefc636)
这里设F是连续可微函数,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0058.jpg?sign=1739460582-wMDRRdoWfzccWB2tjSC2FaRSNvvc9mJ7-0-f961a8a9b342c61d1f7bbee2a5585f45)
在曲面(1.14)上任取一点P0(x0,y0,z0),考查这曲面上经过这点的任意一条连续可微的参数奋线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0059.jpg?sign=1739460582-e3JrRd79gBgL5v8lRLURx4FSqigKg1er-0-c0b94270840d16c433310e77ad0b11c0)
我们有恒等式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0060.jpg?sign=1739460582-NvxsL1WkRqXdzRwBBenSaAFQ0LvU3h5U-0-05ec843499bafd1c16614cdd68225a18)
将这式对t微分,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0061.jpg?sign=1739460582-zxPRTzpxKaOIHaQ4QgW5f1GJfvjysa7a-0-57ca2162c5e8ecf74de259a001e96843)
由此可知,任何一条这样的曲线,在点P0的切线都正交于向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0062.jpg?sign=1739460582-i1PiRFGNwYzSQEtrj4HmQ3lCBSXlK546-0-1a908c9b39d9642edfa89c3e3b408e45)
这里,为书写省事,我们记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0063.jpg?sign=1739460582-29tNflSVnPJUa90diTxtUqeZnrJH7nUd-0-4bf36935d00ec46f10c22868a005db42)
通过上面的讨论,我们写出曲面(1.14)在点P0的切平面的方程:向量形式的方程为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0064.jpg?sign=1739460582-N2j6Ffp9RrmNqREtBjPjIwTJU1TLEW2O-0-abe9c605ff3cb12a9e889f8688c4034e)
坐标形式的方程为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0065.jpg?sign=1739460582-GdgRUB3AhbiMgKfAFUq5buHn3r2P5Dfm-0-6bc3c16de5a4c3d7a37b47c6ccbfd7a8)