1.1.2 人工智能、机器学习和深度学习之间的关系
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,人工智能的核心是机器学习。在维基百科中,机器学习有以下几种定义。
■ 机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。
■ 机器学习是对能通过经验自动改进的计算机算法的研究。
■ 机器学习指用数据或以往的经验来优化计算机程序的性能。
机器学习一般可以分为监督学习、无监督学习、强化学习三类,其常见算法包括决策树、朴素贝叶斯、支持向量机、随机森林、神经网络和 Boosting。机器学习是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。
深度学习是机器学习领域一个新的研究方向,是一种实现机器学习的技术。深度学习的概念源于人工神经网络的研究,是利用深度神经网络来解决特征表达的一种学习过程。深度学习的概念与浅层学习相对。传统的机器学习方法一般采用浅层结构的算法,存在一定的局限性,如表示复杂函数的能力有限,对复杂问题求解时的泛化能力受到一定的制约。而深度学习可通过学习一种深层非线性网络结构来实现复杂函数逼近,表征输入数据的分布式表示,学习数据集的本质特征。
深度神经网络本身并非一个全新的概念,可理解为包含多个隐藏层的神经网络结构。由于深度学习模型中包含更多的隐藏层,模型中神经元连接权重、阈值等参数也更多,深度学习模型可以通过组合底层特征形成更加抽象的高层来表示数据的属性类别和特征,更好地实现数据的分布式特征表示,从而获得更好的模型训练效果。
综上所述,人工智能的核心是机器学习,而深度学习则是机器学习中一个新的研究方向,三者之间的关系如图1-1所示。深度学习与传统机器学习相比,采用了更为复杂的深度神经网络,是机器学习领域的一个分支。
图1-1 人工智能、机器学习与深度学习之间的关系