![线性代数](https://wfqqreader-1252317822.image.myqcloud.com/cover/441/32164441/b_32164441.jpg)
1.3 克莱姆(Cramer)法则
本章第一节引入了利用二阶和三阶行列式求解二元、三元线性方程组的克莱姆法则.本节将利用n阶行列式的性质,给出求解n个未知量、n个方程的线性方程组的克莱姆法则.
设n个未知量、n个方程的线性方程组为
![42692-00-023-02.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-023-02.png?sign=1739252770-jnA4f984s62pdNRh3lc2YqFpYPC9fsqe-0-ba5308117210f2fdee25a98e30a6a0f3)
其系数行列式
![42692-00-023-03.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-023-03.png?sign=1739252770-neDbwe2tiEnqK4s9AJvmMxuKaWvE6FGw-0-6d974103e711889fb6d56b8d15ad8004)
下面讨论方程组(1.3.1)的求解问题.
为消去方程组(1.3.1)中的x2,x3,…,xn解出x1,用D的第一列元素的代数余子式A11,A21,…,An1分别乘以方程组(1.3.1)的第1,第2,…,第n个方程,得
![42692-00-023-04.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-023-04.png?sign=1739252770-lOfOss8Txg5Yai6xHMqQxKhSEil5YfPc-0-c4e7c6b175f964d5123fdf52cabc9ae6)
再将上面n个方程的左右两端分别相加,由式(1.2.5),有
![42692-00-023-05.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-023-05.png?sign=1739252770-UZazAEd4fYGDQgOLJIc2pq96l2yG2TLp-0-b9f1f6ec605edc52371000d6a2e3c569)
即 .
同理可用D的第j(j=2,3,…,n)列元素的代数余子式A1j,A2j,…,Anj依次乘方程(1.3.1)的每一个方程,得
![42692-00-023-07.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-023-07.png?sign=1739252770-Vmj8Rt6Wsl8UcPxAbG9DadqKSQrg9rau-0-1cf9101a8f38a4af259c208972768316)
记行列式
![42692-00-024-01.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-024-01.png?sign=1739252770-pdSDX6yLQVbKHabDhzuN8GZ4XQu640jx-0-bca044d88d273647111b49a6d8d00751)
Dj是把系数行列式D的第j(j=1,2,3,…,n)列换为方程组(1.3.1)的常数列b1,b2,…,bn所得到的行列式.显然,当D≠0时,方程组(1.3.1)有唯一解
![42692-00-024-02.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-024-02.png?sign=1739252770-RIkBkdfWFTZl7edRvWpmDLsXVpJT6ZZw-0-e699dc90fddacd549f326677f31a0ed8)
定理1.3.1(克莱姆(Cramer)法则)含有n个未知量、n个方程的线性方程组(1.3.1),当其系数行列式D≠0时,有且仅有一个解
![42692-00-024-03.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-024-03.png?sign=1739252770-ZqNTiCEStHvPIsDmWhYgxLadEfwtVOqF-0-3606dd576e9f5e4c245ebd40581a21e6)
其中,Dj是把系数行列式D的第j列换为方程组的常数列b1,b2,…,bn所得到的n阶行列式(j=1,2,3,…,n).
例1.3.1 解线性方程组
![42692-00-024-04.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-024-04.png?sign=1739252770-gMnf6p4GKlJKjrvFoFqYyOTpnnN0sBvB-0-6f3fb9e5c58dd4b603ec07c4c5dacd99)
解 方程组的系数行列式
![42692-00-024-05.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-024-05.png?sign=1739252770-gayfFAa9BaqlxrYRsnWdKM3eoXk8f3ZZ-0-512192407a5dcdac41bf5711b1b30ad3)
故方程组有唯一解.而
![42692-00-024-06.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-024-06.png?sign=1739252770-V2bERvDyIXZyurNZFy09k98sp2gLMdWF-0-6d33b38f53a9b5c223bb618f00c36729)
所以方程组的解为
![42692-00-025-01.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-025-01.png?sign=1739252770-22UXBzvpQOut90bSV6RSh2edpN9RhiNL-0-f992787a0c89fcb458d5482a99f4b02a)
如果方程组(1.3.1)的常数项全都为零,即
![42692-00-025-02.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-025-02.png?sign=1739252770-8BUAJs09Yi4GKH1iOdckl2vq0pAN234b-0-b607d3ddd5120e7c9dbeebb2ee099530)
方程组(1.3.4)称为齐次线性方程组.而方程组(1.3.1)称为非齐次线性方程组.
方程组(1.3.4)的系数行列式D≠0时,显然,x1=x2=…=xn=0一定是齐次线性方程组的解,并且是唯一的一组零解.因此,若方程组(1.3.4)具有非零解,必须D=0,即有如下定理:
定理1.3.2 含有n个未知量、n个方程的齐次线性方程组(1.3.4)若有非零解,则它的系数行列式D=0.
该定理说明系数行列式D=0是齐次线性方程组(1.3.4)有非零解的必要条件.在第四章中还将证明D=0是齐次线性方程组(1.3.4)有非零解的充分条件.
例1.3.2 问当λ为何值时,齐次线性方程组
![42692-00-025-03.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-025-03.png?sign=1739252770-c88FT3zE9JExEaVv96VNL9fUcPqQr6dU-0-99fc0e84bd3b0d0eec9cf7fbf3efa224)
只有零解?
解 方程组的系数行列式
![42692-00-025-04.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-025-04.png?sign=1739252770-wk6jOVp6gco5RMDekTSdJzl5JMKK4Xqq-0-b4ed4cb9476c901366a501945f24e4ec)
当λ≠0,λ≠±1时,方程组只有零解.
克莱姆法则只能在D≠0时应用.D=0的情况将在第四章讨论.
习题1-3
1. 用克莱姆法则求解下列线性方程组.
![42692-00-025-05.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-025-05.png?sign=1739252770-AcJlyYXM5yMrUscClDj0qmfs8myAcVjy-0-6374f8f94f355828570bdb88de6f0918)