
5.2 材料力学基本公式
5.2.1 主应力理论公式
表1-5-9 平面应力状态下斜截面上的应力、主应力、最大切应力及应力圆





注:表中各式所表示的应力都设为正,若按表所列公式算出的某应力值或偏转角为负,则其方向与图中表示的方向相反
5.2.2 常用的强度理论
表1-5-10 常用的强度理论

注:极脆材料如淬硬工具钢和陶瓷等;拉、压强度不等的材料如铸铁、混凝土和岩石等;低塑性材料如淬硬高强钢等;塑性材料如低碳钢、非淬硬中碳钢、退火球墨铸铁、铜、铝等。
5.2.3 许用应力与安全系数的选取
(1)许用应力
对于标准的和专用的机械零部件,其许用应力与安全系数常常有比较成熟的推荐值。但对于非标准的或特殊的,或对其体积或尺寸无严格限制的机械零部件,其许用应力σp与安全系数n常需要设计者自己选取。
工作应力σc与许用应力σp的一般关系式为
σc≤σp
工作应力 σc=Kwσ
许用应力 σp=σlim/n
式中,Kw为载荷系数;σlim为材料强度的极限值。
由于σ为与计算中所引用的名义载荷F对应的名义应力,σc是与在工作中所存在的实际工作载荷Fc对应的工作应力,因此,也就有
Kw=Fc/F
载荷系数Kw与工作载荷的类型或机器的受载状态有关。当有动态过载的危险时,要用经常反复的最大载荷(名义载荷加静态附加力和动态附加力)作为Fc。当有静态过载的危险时,要用按最不利的条件计算的最大的总力作为Fc,即使这个力只发生一次。
Kw的精确值只能通过对在已经做好的或与之类似的构件上的载荷或应力的测量得到。如果没有精确确定的Kw值,则可用表1-5-11的推荐值。
表1-5-11 载荷系数Kw的推荐值

(2)安全系数
安全系数n应当综合载荷确定的准确程度、材料性能数据的可靠性、所用计算方法的合理性、加工装配精度以及所设计的零部件的重要性等来确定。各行业都有一些凭经验的安全系数,但都偏于保守。
有一种相当流行的部分系数法,它将各个对安全系数有影响的因素分别用一个分系数n1、n2…表示,这些分系数的乘积即为安全系数:
n=n1n2n3n4…
表1-5-12为各个分系数的例子及其推荐值。
实际上,这些分系数相互之间有一定的联系,即某个分系数取小值时,另一分系数可能要取大值。同时,对这些分系数的选择或对各影响因素的评估常带有主观性,即一般取大值或中间值。因此,如果取值不当,各个分系数的乘积就可能会很大,从而导致零件尺寸过大。通常,所考虑的因素越多,安全系数值越大。
因此,目前比较简单的方法是只取三个部分系数,即
n=n1n2n3
式中,n1考虑材料的可靠性(力学性能的均匀性、内部缺陷等);对锻件或轧制件制造的零件,n1=1.05~1.10,对铸造零件,n1=1.15~1.2。n2考虑零件的重要程度(工作条件),一般n2=1.0~1.3。n3考虑计算的精确性,一般n3=1.2~1.3。
有时也可按计算方法按下列粗略值选取安全系数:
按抗疲劳断裂计算n=1.5~3;
按抗变形计算n=1.2~2;
按抗断裂计算n=2~4;
按抗不稳定计算n=3~5。
表1-5-12 部分系数法求安全系数时各分系数的推荐值

5.2.4 常用截面几何性质的计算
表1-5-13 常用截面几何性质的计算








5.2.5 杆件计算的基本公式
表1-5-14 杆件计算的基本公式


5.2.6 非圆截面直杆自由扭转时的应力和变形计算式(线弹性范围)
表1-5-15 非圆截面直杆自由扭转时的应力和变形计算式(线弹性范围)


注:截面周边各点切应力方向与周边相切,凸角点切应力为零,凹角点有应力集中现象。
5.2.7 受静载荷梁的内力及变位计算公式
表1-5-16 受静载荷梁的内力及变位计算公式



















表1-5-17 梁分段的比值及的函数表


5.2.8 单跨刚架的弯矩计算公式
表1-5-18 单跨刚架的弯矩计算公式



注:引起刚架内侧拉伸的是正弯矩。
5.2.9 接触应力计算
高副机构,理论上载荷是通过点或线接触传递的,实际上零件受载后接触部分产生局部弹性变形,从而形成接触面很小的面接触,这样在零件的接触处产生很大的局部应力,离开接触面稍远处接触应力急剧下降,此时应力称为接触应力。由于接触面附近材料处于三向应力状态,而且三个主应力都是压应力,在接触面中心处三个主应力大小几乎是相等的,所以,该处的材料能够承受很大的压力而不发生屈服,因此,接触面上的许用压应力较高。通常将接触强度条件写成
σmax≤σHP
式中 σHP——许用接触应力,与材料及其热处理情况、点或线接触、动或静接触的不同情况有关,一些常用零部件的许用接触应力,见表1-4-19~表1-4-22。
表1-5-19 接触应力计算公式



注: 表中E为弹性模量; μ为泊松比。
表1-5-20 重型机械用钢的许用接触应力

注:表中的许用应力值,仅适用于表面粗糙度为Ra6.3~0.8μm的轴,对于Ra12.5μm以下的轴,许用应力应降低10%;Ra0.4μm以上的轴,许用应力可提高10%。
表1-5-21 润滑良好的接触零件(如凸轮)的许用接触应力

表1-5-22 润滑一般的接触零部件(如走轮)的许用接触应力

5.2.10 平板中应力与位移的计算
表1-5-23 等厚实心圆板的应力和位移(ν=0.3)



表1-5-24 等厚圆环板的应力与位移(ν=0.3)



表1-5-25 等厚矩形板的应力与位移(ν=0.3)


5.2.11 薄壳的应力与位移的计算
表1-5-26 薄壳的应力与位称的计算


5.2.12 厚壁圆筒和球壳的应力、位移计算与强度设计
表1-5-27 厚壁圆筒的应力与位移计算(内、外压均匀单独作用下)

表1-5-28 厚壁球壳的应力和位移计算

表1-5-29 厚壁圆筒和球壳的强度设计计算

5.2.13 旋转圆筒、轴、圆盘的应力和位移计算
表1-5-30 旋转长圆筒、圆轴的应力和位移计算公式

表1-5-31 等厚旋转圆盘的应力和位移计算式

5.2.14 压杆稳定性计算
对于工程实际中的压杆,为了使其能正常工作而不丧失稳定,必须进行稳定计算,也就是应使压杆所承受的轴向压力F小于它的临界力。为安全起见,应使压杆有足够的稳定性,还要考虑一定的安全系数。因此,压杆的稳定条件为
式中 F——压杆的工作应力;
Fcr——压杆的临界力,见表1-5-32;
nst——许用稳定安全系数,见表1-5-33。
表1-5-32 等断面压杆的临界载荷和临界应力计算

表1-5-33 常用零件规定的稳定安全系数的参考数值

注:除铸铁和木材外其余均为钢制杆。
表1-5-34 单跨度等截面压杆的长度系数与稳定系数

注:表1-5-34~表1-5-36所列的μ、η是指理想支座,对实际的非理想支座应做出尽可能符合实际的修正。如考虑实际固定端不可能对位移完全限制,应将理想的μ值适当加大,对表中一端固定的情况,可分别取2.1、1.2、0.8、0.65;考虑到桁架中有节点的腹杆,其两端并非理想铰支,应降低μ值,理想μ=1时应降到0.8~0.9;又如丝杆两端滑动轴承支承,依轴套的长度l与内径d之比取如下μ值:
当两端轴承均有l/d≥3时,μ=0.5;当两端轴承均有l/d≤1.5时,μ=1.0;
当一端支承l/d≥3,另一端支承1.5<l/d<3时,μ=0.6;当两端支承均有1.5<l/d<3时,μ=0.75。
表1-5-35 立柱的稳定系数η

表1-5-36 中部支撑的柱的稳定系数η

表1-5-37 直线公式系数a、b及λ范围
