![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
10.3 名校考研真题详解
一、判断题
1.若f(x)恒正连续,且收敛,则必有
( )[上海交通大学研、浙江大学研、南京师范大学2006研]
【答案】错
【解析】举反例:利用反常积分概念,很明显可知满足题意,但是
二、解答题
581.如果广义积分(其中a是瑕点)收敛,那么
收敛.并举例说明命题的逆不成立.[中国科学院研]
证明:由收敛,根据柯西准则,
存在δ>0,只要
,
总有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1374.jpg?sign=1738980771-eHB4HvFaWsGwiuSIgsBye8ALIgkC6ZwU-0-ac7d1e77451c13124bfd68376e89e1e9)
利用定积分的绝对值不等式,又有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1375.jpg?sign=1738980771-mbVB5M7UKMDbJpZyrIdSdfw3oX7RzIj2-0-79c03be2d7ef8587b9fe3fb8fdee7ef5)
再由柯西收敛准则的充分性可知收敛.
命题的逆不成立,例如:
设,令
,则
而由狄利克雷法可以判定
是条件收敛的,从而可知
收敛但
不收敛.
596.积分是否收敛?是否绝对收敛?证明所述结论.[北京大学研]
解:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1384.jpg?sign=1738980771-ORLTyeFJyNIeQ1WBRdEOAQXPIOYKCldF-0-a9609a445150e02f1e65fc8fcfffd229)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1385.jpg?sign=1738980771-SdRQJWxQ6F1gDqeKz7nxnQhHODPV1xqY-0-97a61eb2318ba04a89878caf8ae6676f)
积分是以x=0为瑕点的瑕积分,因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1387.jpg?sign=1738980771-z20KswAEhbBm4gfnmDR8fsCBdCjb5kHg-0-f91f010bc3056d45fe3be98e24be06a1)
所以与
同阶,所以
收敛.
而,所以
绝对收敛,积分
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1393.jpg?sign=1738980771-CD9Mv0i9UQ2ch3Y1tqw4kWoj15rFrQv5-0-834304ccbf034e30f615a0ee6d0bfb06)
是无穷积分,当x>1时,,可利用
的马克劳林公式得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1397.jpg?sign=1738980771-RP67EZeKcvMPtKMQWiqrx7SoiNAWV6YI-0-08d409b499b1862a1a7e8fe9d6d24816)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1398.jpg?sign=1738980771-kmT2uoFotOxCLTKRTGdz2umQIxoKnogI-0-352a30a9174630259ab06d4053c27dd2)
已知条件收敛,而
绝对收敛,所以无穷积分
条件收敛但不绝对收敛.
综合可知:条件收敛.
617.计算积分[武汉大学研]
解:设显然
在SA上可积,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1406.jpg?sign=1738980771-ljsYTWKCabYC3G9pwJp1WjByYhI9gqea-0-dcc393dba68b58ba7405af78f93b76fa)
作半径为a和的
圆D1和D2,使得
,由
有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1412.jpg?sign=1738980771-m9dopcMsoYLD3Ha3mBvXofFSUrPW8BpI-0-552c6e47b16115b6fd2c98a09d3d3a0e)
而
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1413.jpg?sign=1738980771-dvK9qK4yZrmeNVxmFN3i432mI3bbSKRR-0-ce9cb7dd83b6fceda19939d96fa12f5d)
类似且有
由夹逼原则可得
,
即
所以
1.求[中山大学2007研]
解:由于,所以
绝对收敛.
1.求[南京大学研]
解:令,则原式变为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1424.jpg?sign=1738980771-Pfj71omrecFZwUw8Zrp9kTZW5El6Fegl-0-3c6afc7ffb2ca105ed00ce7969655daa)
1.设函数f(x)在区间[0,+∞)上连续,0<a<b.
(1)证明:如果,则
(2)证明:如果积分收敛,则
[中北大学研、北京交通大学2006研]
证明:(1)对任意的,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1430.jpg?sign=1738980771-6EeJnmuNFld6lzk38yUgKsA0afbBK5N8-0-4d246d8da41325a7a9609dbe33aa1f08)
在上式右端的两个积分中分别进行变量替换ax=t和bx=t,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1431.jpg?sign=1738980771-CnATGWtCFHLo1rAc4YvWn0yq3c1bF6EH-0-db6f31fef09e3e940c03f222b1a402b5)
由积分第一中值定理,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1432.jpg?sign=1738980771-UoTk6QMdW6oxjEeocMFq51yPBOa0pjz9-0-51ddb23e106a6dc6575fa3b07b415585)
其中ξ介于aα与bα之间,η介于aβ与bβ之间.令则同时有
由f(x)的连续性及f(+∞)存在性,即有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1435.jpg?sign=1738980771-3FUOUcKy0YBD1xD7orkS1HhbDgpxnOWc-0-eb8eaceebba7f7ae388fc89d4a0ff124)
(2)与(1)的证明完全类似.对任意的,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1437.jpg?sign=1738980771-CZRvkbjeSPOcwi8sWlZjLUOhg9mrRxoN-0-662440ea0bbc8558178ccaa9a0a0d0ae)
在上式右端的两个积分中分别进行变量替换ax=t和bx=t,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1438.jpg?sign=1738980771-T33hTEj2MFkvYgcZSK4md0wb0qxw1gzh-0-14f938f44942f2589fafecd525a33f81)
由积分第一中值定理,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1439.jpg?sign=1738980771-HH7ef6lo12AYZqZugYWEPgQCSjPO3x8A-0-df5a1b0996094b3b581a52e1968a4cbb)
其中ζ介于aα与bα之间.令,则同时有
由f(x)的连续性及
收敛,即有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1443.jpg?sign=1738980771-X7b71hbhXwFjCMPXCU5kkriuQ7HBMRfd-0-c259e1e8dcfa2ca89e30151257d57b16)
1.设对任意的A>0,f(x)在[0,A]上正常可积,且收敛,令
,
试证明φ(x)在(0,+∞)内至少有一个零点.[南京大学研]
证明:由φ(x)的表达式可知.因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1447.jpg?sign=1738980771-PWyDCVAlvoer2476D45RCzwm6GilEsn0-0-b81c39982501b3b886af7938a18a904e)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1448.jpg?sign=1738980771-3DOHVzV4JaFbtUQ4vkRmxykOz2q1iNI5-0-4b70e0647210789fe963b2570462ea23)
根据连续函数的介值性可得,φ(x)在(0,+∞)内至少有一个零点.
1.讨论的收敛性.[中国地质大学研]
解:令
当α>1时,取δ充分小,使α-δ>1,因为,所以
与
同时收敛,故
收敛.
当α≤1时,由于,所以
与
同时发散,故
发散.
又因为,所以
仅当α-1<1,即α<2时收敛.
综上所述,仅当1<α<2时,积分收敛.
1.讨论的收敛性.[复旦大学研]
解:由于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1460.jpg?sign=1738980771-hDQNTvIiQ3kkY5gOsbQOdviSOjK6yQwp-0-6b34bce8a4d630e6befee637bcfc0803)
所以当0≤p<q-1时,收敛;当p≥q-1时,
发散.由于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1463.jpg?sign=1738980771-5yznqJD7TlapQppMy3hN99d06m98SCqR-0-b5ee422c22399e98679efd513f5bdf27)
所以当p>-2时,收敛;当p≤-2时,
发散.故当-2<p<q-1时,
收敛;当p≤-2或p≥q-1时,
发散.
1.f(x)在(0,1]上单调,且广义积分收敛,证明:
存在.[上海大学2006研]
证明:不妨设f(x)在(0,1]上单调递增,则由知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1471.jpg?sign=1738980771-Fe8D0CbZ1yCqSks3FgMUZYsHVSVPPWuE-0-d4bd6299cc0ebbcfbe0037f082f8a9b7)
而故由夹逼法知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1473.jpg?sign=1738980771-OG6g6XLB44P6SREqhNbby6m2EbY3kraX-0-132104d5a6d66c2ba3bef754c855491e)