![邢其毅《基础有机化学》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/809/27031809/b_27031809.jpg)
第14章 羧酸衍生物 酰基碳上的亲核取代反应
14.1 复习笔记
一、羧酸衍生物的结构
羧基中的羟基被-X,,—OR,—NH2(或—NHR、—NR2)置换后产生羧酸衍生物,包括酰卤(acylhalide)、酸酐(acid anhydride)、酯(ester)、酰胺(amide)。
1.酰胺中的C—N键较胺中的C—N键短,主要因为:
(1)酰胺与胺中C—N键的碳分别采用是sp2与sp3杂化轨道与氮成键,前者杂化轨道中的s成分比后者多;
(2)羰基与氨基的氮共轭,从而使C—N键具有某些双键的性质。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image007.jpg?sign=1738987939-KpLgrWE3lyrrLshcwm6qrmNugcmyOAhj-0-973bf688f8b4d347fcfc70b154ac3f16)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image009.jpg?sign=1738987939-tfwsMBz0d329e0is1ZH4jkSnanoEiM70-0-232e278a34cf5947a447040513cd84af)
2.由于共轭作用,酯基中的C—O键也比醇中的C—O键短。
3.酰氯中C—Cl键比氯代烷中的C—Cl键长,这是因为氯在酰氯中的吸电子诱导效应远远强于与羰基的共轭效应。
4.这种具有相反电荷的偶极结构在羧酸衍生物中的重要性:酰胺>酯>酰氯。
二、羧酸衍生物的物理性质
1.低级酰氯与酸酐是有刺鼻气味的液体,高级的为固体;酰氯与酸酐不溶于水,低级的遇水分解。
2.低级酯具有芳香的气味,存在于水果中,可用作香料;十四碳酸以下的甲酯、乙酯均为液体,酯在水中溶解度很小。
3.酰胺除甲酰胺外,均是固体,脂肪族的 N-取代酰胺常为液体,低级的酰胺可溶于水。
酸酐与酰胺的沸点比相应的羧酸高,酰氯和酯的沸点比相应的羧酸低。
这些羧酸衍生物都可溶于有机溶剂,而乙酸乙酯是很好的有机溶剂,大量用于油漆。
三、羧酸衍生物的反应
1.酰基碳上的亲核取代反应
(1)酰基碳上的一个基团被亲核试剂所取代:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image011.jpg?sign=1738987939-ofnLGOCi3p3bq9NBnBugYzIgfvUBCfw8-0-c9946e36937fe104cc420df8043063e1)
①碱催化的反应机理:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image013.jpg?sign=1738987939-7V9mwgqzx6eDTNlfS69kaQ6DvpFZRl6g-0-aacce40995b1ae74c888695e6c958050)
四面体中间体
反应分为两步:
a.羰基碳上亲核加成,形成一个带负电荷的四面体中间体(tetrahedral intermediate)。
b.消除一个负离子。消除反应决定于离去基团的性质,越易离去的基团,反应越易发生。
在羧酸衍生物中,基团离去能力的次序是:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image015.png?sign=1738987939-7Ju7TJtQqHKPORRdUli1wxyaGp9yxEuh-0-9ca57f6bd242b30cbd3654ce370abb4c)
②酸催化的反应机理:
a.羰基氧的质子化(protonation)。酸的作用就是通过羰基氧的质子化,使氧带有正电荷,从而吸引羰基碳上的电子,使碳更具正电性。
b.亲核试剂对活化的羰基进行亲核加成,得到四面体中间体。
c.发生消除反应生成产物。
③羧酸衍生物亲核取代的反应性顺序:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image019.jpg?sign=1738987939-HkC9Cg2mGfzxzqTIQG4CaHfXYMay22IO-0-ba761a6d8574fede2df36eb254af192b)
(2)羧酸衍生物的水解——形成羧酸
①酰卤的水解
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image021.jpg?sign=1738987939-dlXo6bMonAds8nGvwWyFS7nBKkKQ3P5y-0-77e969a5f4a4267e7c76203a1f455392)
水解速率很快;分子量过大时,因在水中溶解度较小,故反应速率很慢。酰卤由羧酸合成,因此水解反应用处很少。
②酸酐的水解
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image023.jpg?sign=1738987939-rgopxH8j0kGmvYhiHEBCMgx6uoy3Wuqi-0-f31bf8481e5967040b0cd074da8ed3d6)
选择合适的溶剂使酸酐溶于水成均相,或加热使成均相,水解易进行。
③酰胺的水解
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image025.jpg?sign=1738987939-F8AlCAHxhFtDGUBSOIVxlbFjAyjmvxpR-0-511cd7767a2085fd6108f017a3a1b0b7)
酰胺在酸或碱催化下可以水解为酸和氨(或胺);
需要强酸或强碱以及比较长时间的加热回流:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image027.jpg?sign=1738987939-XDEuuv32T78gbItK84nJNhQ3ADMw7sk9-0-13de7dea166906c8a17ee91d0e84f8d7)
a.酸催化时,使酰胺的羰基质子化,中和平衡体系中产生的氨或胺,使平衡向水解方向移动。
b.碱催化时OH-进攻羰基碳,同时将形成的羧酸中和成盐。
c.可用于鉴定酰胺:通过酰胺水解,根据所得羧酸及氨(或胺),来判断酰胺的结构。
d.有些酰胺有空间位阻,较难水解,可用亚硝酸处理。
④腈的水解
腈在酸或碱作用下加热,可水解为羧酸;
控制反应条件,腈水解为酰胺:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image031.jpg?sign=1738987939-SL0nmWWz2b909d8zwPCayoATOntam4Kf-0-3c38345097c7cccc24815b4c19d87328)
⑤酯的水解
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image033.jpg?sign=1738987939-8382XPFM5rWsFv5HmaEwKjReNjWySfHM-0-ee216d40f5770c8e9cd84b695f8b76b4)
该反应为酯化反应的逆反应,常用碱作催化剂。
⑥酯水解的反应机理
a.碱性水解
CH3COOC2H5+NaOHCH3COONa+C2H5OH
机理为亲核加成一消除(nucleophilic addition-elimination mechanism):
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image037.jpg?sign=1738987939-e0FfI3Qs4FYOej9bIFc4XpdIe71Ke63M-0-e07c17e2914537aa21c24f087511fa6d)
OH-先进攻酯羰基碳发生亲核加成,形成四面体中间体;然后消除OR′。这两步反应均是可逆的,在四面体中间体上消除OH-,得回原来的酯;消除-OR’,可以得羧酸。在碱性条件下,生成的羧酸和碱发生中和反应,从而移动了平衡。
酯在碱性水解时,发生了酰氧键(acyl-oxygen bond)断裂。
酯的碱性水解是按四面体中间体机理进行的。
羧基的α碳上存在吸电子基团或羰基附近空间位阻小,都使反应速率加快。
b.酯的酸性水解
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image039.jpg?sign=1738987939-EJ9WM9GUr34bdrISW669k5lTgS7VaRDw-0-87e537a858d137d2b8b76eb421637a54)
酸催化水解是酰氧键断裂:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image041.jpg?sign=1738987939-vi0yDXWxtpPFZGxdDFBgpyfLSoXYEpxI-0-11982a0c767dd33e036445b9538b9b91)
在酸水解反应中,极性基团对水解速率的影响不如在碱水解中大;空间位阻影响酯的水解,基团的空阻越大.反应速率越慢。
上述的酸催化酰氧键断裂机理适用于1°醇酯和2°醇酯的酸性水解。
c.3°醇酯的酸性水解机理
按烷氧键(alkyl—oxygen bond)断裂的机理进行的:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image043.jpg?sign=1738987939-pP22z0vUA3CouHMy0cgk7pIgWbzBDIm5-0-a04de935ab2246c596fadebdc4c69d41)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image045.jpg?sign=1738987939-5bixrXKGhdM8pgeoxicwbhI2G92VlYr6-0-44b2de3e5581ed121fdcbcc5d8b7cf43)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image047.jpg?sign=1738987939-TKf7JkBn7echWGKRGMdjtU6KnvpuKDB0-0-7fc5327764e8958535254db19b7fda61)
这是一个SN1过程,中间首先形成碳正离子而放出羧酸,碳正离子再与水结合成醇。
可根据酯的水解反应产物分析酯的结构。
羧酸衍生物的水解活性次序是:酰氯>酸酐>酯>酰胺
(3)羧酸衍生物的醇解——形成酯
①酰卤的醇解
用羧酸经过酰氯再与醇反应成酯;
对于三级醇或酚,在氢氧化钠或三级胺如吡啶、三乙胺、二甲苯胺等存在下反应,碱的功能是中和产生的酸。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image049.jpg?sign=1738987939-NSCfhpN1z3rDTSErP2wZCYEQfUkQLIcO-0-6ab5fd933264d59590a426bfe5857246)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image051.jpg?sign=1738987939-J6ThaQzK1ynRlDdyGaL3ACC6BiM3z9GV-0-24c84d35efac1e8d5fdbd10becb8d66f)
②酸酐的醇解
a.酸酐醇解产生一分子酯和一分子酸,是常用的酰化试剂(acylation agent)。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image053.jpg?sign=1738987939-XbU7XFFmSi7uqeDsRl7JlnufIImM9t0f-0-4432206e8f93bc3e3296f01403eb6fe4)
b.环状酸酐(cyclic acid anhydride)醇解,可以得到分子内具有酯基的酸,用酸催化才能进行:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image055.jpg?sign=1738987939-vxiO9SSV2jdPpjFBMaeppKvQSzfx3i6J-0-6befaea41b3da51d65b377091602a307)
③酯的醇解
酯中的OR′被另一个醇的OR′′置换,称为酯的醇解;
反应需在酸(盐酸、硫酸或对甲苯磺酸等)或碱(烷氧负离子)催化下进行:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image057.jpg?sign=1738987939-s9LxdZc77BycGeLhOYydx2LuhMzbs5u6-0-7b774cf2e8d9eece48910f8b47894657)
也称为酯交换反应(ester exchange)。
a.将一种低沸点醇的酯转为一种高沸点醇的酯:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image059.jpg?sign=1738987939-lksMAx5NtxwQoLWu5h2ww9NyOoZiVTxx-0-b8cdb4f2e26572d33e314d947cce8f1d)
b.二酯化合物的选择性水解:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image061.jpg?sign=1738987939-aESpT8Fm00VpaANIXkNn0Pb5Qh5asECB-0-63bb036a63c77fa0e57fe6722eef3962)
c.合成涤纶:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image063.jpg?sign=1738987939-pKDM0Vm60f9BZhrGemkK59jqb55H54nT-0-ac4c4e866cf4f3b4930a26c0df316a5d)
④酰胺的醇解
酰胺在酸性条件下醇解为酯,或用少量醇钠在碱性条件下催化醇解。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image065.jpg?sign=1738987939-DzoBNfNUvh0FsfhDr6fbY4K8jeypJI33-0-88bac06eea972e3dece255413d84118f)
⑤腈的醇解
腈在酸性条件下(如盐酸、硫酸)用醇处理,也可得到羧酸酯:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image067.jpg?sign=1738987939-GswUh5P6ratuhOTZBM2XsXwV3gck2NMF-0-6706cdff785bc84529086d7da98d8e1f)
(4)羧酸衍生物的氨(胺)解——形成酰胺
①酰卤的氨(胺)解
酰氯很容易与氨、一级胺或二级胺反应形成酰胺:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image069.jpg?sign=1738987939-xvNkKltCTHXs1SFObcPueIUXRT0IygD0-0-708a798c278eb091570032f31ae319e2)
酰氯与胺反应通常在碱性条件下进行,常用的碱有氢氧化钠、吡啶、三乙胺、N,N—二甲苯胺等;
酰化(acylation)反应最常用的酰化试剂是苯甲酰氯与乙酰氯;
对于芳香酰氯与α碳上有位阻的脂肪酰氯,可以在NaOH的水溶液中进行反应。
②酸酐的氨(胺)解
常用的酸酐是乙酸酐,与乙酰氯相比,乙酸酐不易水解。
a.对于易溶于水的反应物,氨(胺)解可以在水中进行:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image071.jpg?sign=1738987939-j37aT9lnbxdzfIrqUxSv0zWSDrXd4pW4-0-a6317026333ed5f0d5f3e849e06389ac)
b.环状酸酐与氨反应,开环得到酰胺酸(amic acid):
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image073.jpg?sign=1738987939-cNunxzdn7aChLPEQ2qq0SQrzw4gYDf3K-0-4afedee9bdae803eb21bf33aff04454c)
c.在高温下进行,产物是酰亚胺(imide)。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image075.jpg?sign=1738987939-EYI5Z6NbNcvjqAtKKXGWzvilwFcvsmn0-0-0ed8da7d172fb4f8efffa197500dce9a)
d.酸酐与胺反应
主要用于各种胺特别是芳香一级胺或二级胺的乙酰化;反应可以在中性条件下或在小量酸或碱催化下进行。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image079.jpg?sign=1738987939-xFXmr32wJuRmsp6IBBOMIkc8tJvMu18M-0-641fd64ede41a36fa9fc3e980663b770)
③酯的氨(胺)解
酯可以与氨或胺反应形成酰胺。它们作为亲核试剂,进攻酯羰基碳。
肼和羟氨等胺的衍生物能与酯发生反应:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image081.jpg?sign=1738987939-CV2b3fLy6Ez0HXHvPMkxjCXmstlMpTha-0-39009e4bba206c72ff35a27cc59d69bf)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image083.jpg?sign=1738987939-EbnoVO7NLBLpKelmMGgXi2luA7hhFFmN-0-2a1d11cc1499ad6170984ccf66ef96a0)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image085.jpg?sign=1738987939-NwxwJl6zizR0Gm1wdq12SHJsKu0pg63x-0-9129b3bad9e3fc35dbf0fce80b913c29)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image087.jpg?sign=1738987939-Qj4WM65UTvfinZ1eW0o0aZGni78GokYK-0-d619d7d2bd555be234cfe72d46bf78fa)
④酰胺的氨(胺)解
酰胺与氨(胺)反应,可以生成一个新的酰胺和一个新的胺:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image089.jpg?sign=1738987939-DtHL4NsJV67W1wPVcnU6VSUxiWyitMhH-0-7a68508374a759759b55f9ac9c540509)
2.羧酸衍生物与有机金属化合物的反应
(1)反应历程:
(2)酰卤与有机金属化合物反应
①与格氏试剂、有机锂化合物反应
主要得三级醇,酮的产率很低,若用2mol以上的格氏试剂,主要产物为三级醇:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image095.jpg?sign=1738987939-nmEm4PcvoUfWOkly91stkhDEsqsL53hT-0-b0342302b7df94211705a940fd208ae0)
a.低温抑制格氏试剂与酮的反应,通过控制格氏试剂的量,可得酮:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image099.jpg?sign=1738987939-Uew5xixiI9zPcdefjlbzilzAktGWxHfn-0-edc39099c0b2a69cdf8a87c981436666)
b.有空间位阻的反应物得到酮,产率很高
②与有机镉化合物反应
易与酰氯反应,与酮反应很慢。合成酮酯(ketonic ester),可以在分子中接长碳链并保存反应性活泼的酯基:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image101.jpg?sign=1738987939-feZkz5wpQ58NYbWmhZVukQLuO0K6qF31-0-5f2b0402e88e347a299b894a7621cb58)
注:有机镉试剂毒性很大。
③与二烷基铜锂反应
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image103.jpg?sign=1738987939-Eo1JlfnqbmR8iqKyXlY6tUhobHJQV7Pa-0-3c310eb734e5a43d306f172933dd528f)
该试剂常用于从酰氯合成酮,产率很高。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image105.jpg?sign=1738987939-oDBjDMvPbb12v6IeM5znC0UIO8iniotk-0-13e73463194481c1f7dad89f19c622a2)
(3)酯与有机金属化合物的反应
酯与格氏试剂反应得醇,反应消耗两倍摩尔量的格氏试剂;
对于有空间位阻的酯(α氢被取代),反应能停留在酮的阶段:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image107.jpg?sign=1738987939-FoIFQVVQfCpElQbnZ1Gsn6FNcglcPrD2-0-68a9fdb00e85679468f6f2f6289d5ae3)
(4)其它羧酸衍生物与有机金属化合物的反应
①二元酸的酸酐与格氏试剂反应用来制备酮酸(ketonic acid):
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image109.jpg?sign=1738987939-zUWASBLA49Y2ykh3qb0XxSJWImUmQ7ln-0-8745d7f089381dab5ac98e72389184f5)
②腈与有机金属化合物反应生成酮
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image111.jpg?sign=1738987939-qJNibB10n8u15jgptLxYgvdjJFmwvUu0-0-b8156508f07c4cdfef69026924aee20f)
3.羧酸衍生物的还原
(1)用催化氢化法还原
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image113.jpg?sign=1738987939-qYtolPbWCMisjS3JqCrO4Iku5Tt6e5S2-0-e942f319e51260f77dabf30b42771f60)
①酯可以被催化氢解为两分子醇:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image115.jpg?sign=1738987939-fDX4OFfH7CAVPB5uTkmcGCu0qw5B5SC1-0-831713afeb57e7f82c395f7080000051)
应用于催化氢解植物油和脂肪(fat),以取得长链醇类。
②苯基在催化氢解过程中保持不变:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image117.jpg?sign=1738987939-fuSYOgchuBV5Jg81UX6u1eHlcjmDvDQU-0-ac9a03549d013feda4fc8fbe3c11808a)
③酰胺还原需用特殊的催化剂并在高温高压下进行:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image119.jpg?sign=1738987939-Fge9VFHbGavtJt21kkXTWnVzs2IuUEVY-0-339385b16dfd420c2e740c3dc89ff236)
④腈用催化氢化法还原成一级胺:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image121.jpg?sign=1738987939-eEcA7Zw50PO91wdPoTLqXxECXWaElncS-0-d24011870e4f3ec0f9d72494cea127dd)
(2)用金属氢化物还原
常用的金属氢化物(metal hydride)有氢化铝锂、硼氢化锂和硼氢化钠。
氢化铝锂的还原能力最强,适用于各种羧酸衍生物的还原;硼氢化锂的还原能力比硼氢化钠略强。酯能被氢化铝锂和硼氢化锂还原为一级醇。
一级酰胺(primary amide,);二级酰胺(secondary amide,
);可被氢化铝锂还原为一级、二级胺:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image127.jpg?sign=1738987939-BfwI2iIknTc5rGYwNzzF0ghcw0s2qQRP-0-a71b3a54b4302ee47bed34ea398f7a57)
腈用LiAlH4还原得一级胺:
(3)酯用金属钠还原
①Bouveault—Blanc还原
用金属钠-醇还原酯得一级醇,称为Bouveault—Blanc(鲍维特一勃朗克)还原:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image133.jpg?sign=1738987939-XilbRCd8hYjsHSDylf8I7FQhVOchfthk-0-c51341ab92f9dda14d4bd5f669a9295f)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image135.jpg?sign=1738987939-GhWaifhDbue0SWi7z8B3yrpGTOI8i938-0-42359451b98dd45bf9233c3631eaf823)
②酮醇缩合
脂肪酸酯和金属钠在乙醚或甲苯、二甲苯中,在纯氮气流存在下剧烈搅拌和回流,发生双分子还原,得α—羟基酮(也叫酮醇)。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image137.jpg?sign=1738987939-OGse8xwwRniPRG6pMG67DSyS3BFqBnbO-0-49baed856ea4dcd9340f53ef672ad668)
4.酰卤的α氢卤代
羧酸的α卤代反应是通过少量酰卤进行的。
在二元羧酸的衍生物只引入一个溴的方法:
(1)将二元羧酸单酯用亚硫酰氯处理,将羧基转为酰氯。
(2)用一分子溴反应,酰氯的α氢原子被溴取代后,通过酰卤的醇解再转变为α一溴代二元酸二酯。
例如α-溴代己二酸二乙酯的合成如下所示:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image139.jpg?sign=1738987939-svwgwppgLNQ7xHv5hy1XzyuKpZ1OSBWH-0-6050c75fc9af46d6fdea12f1deb28940)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image141.jpg?sign=1738987939-a9G5Pnsnz07tjoVR4fUOTliWZiux92Uy-0-d75a80a1fbd4eadec440e9699a17fe01)
酰卤的α氢比酯的α氢更活泼。
5.酰亚胺的酸性
酰亚胺氮上的氢具有一定的酸性,用pKa值来衡量其酸性的强弱:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image143.jpg?sign=1738987939-3NEOjKc6ypLKfMPh6THoFCUwasUkJ1PK-0-22a7cb80b0445264bb18968c651dfa1b)
(1)与碱发生成盐反应:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image145.jpg?sign=1738987939-ErRKf4uPizxaJxUY68Tg2J3p91Cy4GlV-0-0277e241122661fea17f699ec018b23c)
(2)与溴发生取代反应:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image147.jpg?sign=1738987939-V00Y0Wk0tnVOmrS1TwJJHsDeVESSzfT8-0-24e24e180f3a968c5375affb2ec0aba4)
N-溴代丁二酰亚胺是一个重要的溴化试剂,可用于烯类化合物的α位溴代。
6.烯酮的反应
含有结构的化合物称为烯酮(olefine ketone)。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image151.jpg?sign=1738987939-QUaBwHjOac3PcJNMqsUQgXdZLgGwyp94-0-2cc711ec3679a7bd1ee22389a6f96f0a)
烯酮由于含有聚积的双键,化学性质十分活泼:
(1)羰基的加成
①烯酮的两个π键易于打开。加成时,总是氢加在氧上,另一部分加在碳上,生成的烯醇经互变异构就得羧酸衍生物。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image153.jpg?sign=1738987939-xqpCiFoph1z7UBcw8GXd4QoqBNntxuXY-0-ebb9329252bb76f7707c3079c3d31031)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image157.jpg?sign=1738987939-ymuWByipJrTUiFXc6w0TXM0FHkRwxuM7-0-5693e26e3062a3e1e7eb87affdbc13f5)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image159.jpg?sign=1738987939-dmrPSjcBUIT2kPcC4Kqt5cERseKz9DvF-0-0e564ba787f070eba044682cee1f4d3b)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image161.jpg?sign=1738987939-m3FCiNNXrApvmWn24CYFhvbXBAJzQcv2-0-40d9dbffa01509a0924a07c0e3bc3e58)
烯酮是一个很理想的乙酰基化试剂(acetylating agent)。
②烯酮可以和格氏试剂发生反应,生成酮:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image163.jpg?sign=1738987939-2AnTzA8Xdkzh6cfLnZkmf2hKOYpYfVJw-0-946996ba8528965b45d16a5156dfc673)
(2)与甲醛反应 烯酮二聚
烯酮与甲醛反应可形成β—丙内酯(β-propanolactone):
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image165.jpg?sign=1738987939-h7SNRms0TCZfYXgZNaM3gkiPZfYw4baa-0-6eee6a8425ceacf99aa6778a53ee2d85)
①乙烯酮在合适的条件下二聚生成二乙烯酮。加热又重新分解为乙烯酮。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image167.jpg?sign=1738987939-fZVmtcTBnYASFRXcMKDx77rctNps6Bal-0-0c077a7fc462a565f795b171f606903c)
二乙烯酮
②β-丙内酯在中性、弱酸性介质中,经SN2反应,发生烷氧键断裂生成β取代羧酸。例如:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image169.jpg?sign=1738987939-vR0cI1O6TtINVb4U8OTQEBguAglQ07zo-0-d58ceb9a5b928f64d51e5e75b4bb0600)
③在碱性或强酸性介质中,经加成-消除机理,发生酰氧键断裂开环,生成β取代的羧酸衍生物。例如:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image171.jpg?sign=1738987939-4pJ76LUU3vsrbYxzJ1gsC71C23YF24iW-0-023d1f17cd2fda01fc2d9455f006e084)
④二乙烯酮由于β碳用双键与亚甲基相连,使亲核试剂难于进攻β碳,主要发生酰氧键断裂。例如:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image173.jpg?sign=1738987939-dKzvYOYQNnLb75eBVzUj29slVzDPTM6t-0-33c955b34beaf05888b6a8f4857b62d0)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image175.jpg?sign=1738987939-t4SOGob6ek87JE2Z02QNu6zxWsqjqGIF-0-a1292ea1d5fa9ae349c8ca77be882f1f)
产物乙酰乙酸乙酯是有机合成的重要中间体。
(3)光分解反应
烯酮在光作用下,分解产生亚甲基卡宾:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image177.png?sign=1738987939-cZSYOEXRmM3IldbeRzqR3llzFjMwrB0W-0-1879d7b6a6f5e06dd579627124aa47e9)
7.Reformatsky反应
醛或酮与α-溴代酸酯和锌在惰性溶剂中相互作用,得到β-羟基酸酯的反应。
(1-羟环己基)乙酸乙酯
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image181.jpg?sign=1738987939-n0dYnWmlnrys1VzpMaw1DBWrqlmdrpfl-0-f60ee034378e24b5deecdd64269a753b)
2-甲基-3-苯基-3-羟基丙酸乙酯
反应机理为:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image183.jpg?sign=1738987939-ZQ5twJO94SzuYVAQqGuT11KoU1aC5W9r-0-434abb120d929c0c7dbc43d035fbead5)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image185.jpg?sign=1738987939-TqsTACSKGGNE5c5XDhA77stKq4ungUrY-0-c3ac5c60d06012400360e0e6f8a689e9)
反应不能用镁代替锌。
β-羟基酸酯很易失水生成α,β-不饱和酯(α,β-unsaturated ester),如:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image187.jpg?sign=1738987939-tAy4kqZcbpPebW0RedNYOp2BpwAO6kGx-0-5b761d3d2b2c809e7e1a71499d737142)
8.酯的热裂
(1)酯在400~500℃的高温进行裂解,产生烯和相应羧酸的反应称为酯的热裂。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image189.jpg?sign=1738987939-0pxUYP8kXE1CxIMuEsfcjT2SA3EXtlgV-0-a56e7cbde37e1d797644e3dbeb58e689)
反应机理为:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image191.jpg?sign=1738987939-YBDImvqNW42Jzgy7P0wj0jFMpFqvcO20-0-02486e8161a207b9ce8fb2b1563f2d68)
这是一个分子内通过环状过渡态的消除反应,分子的反应构象处于重叠式,被消除的酰氧基与β氢原子是同时离开的,并处于同一侧,故称为顺式消除(ciselimination)。
①如果羧酸酯有两种β氢,可以得到两种消除产物,其中以酸性大、位阻小的β氢被消除为主要产物。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image193.jpg?sign=1738987939-meBuwAscPkIQO4We7QvU621wQaMaBK2C-0-d880602ebfd98edfc4fb432df73d0ea5)
②如果被消除的β位有两个氢,以E型产物为主要产物。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image195.jpg?sign=1738987939-Ya7GXq9j95sfEg0MGJu7h6kaWzCbLdzc-0-9bd9999a4aafe22454bb8388d091e74d)
③制备末端烯烃(end alkene)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image197.jpg?sign=1738987939-OSP07UHcYbn3rtI6nHQHTj34M3dJbwvS-0-3dbdad2021eabfb947e736b1dab51175)
④酯热裂是通过一个环状过渡态完成的,不会产生重排产物,用来制备具有环外双键的烯烃。例如:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image199.jpg?sign=1738987939-DiWWakavGH4C1KRACpvDRa8tEckybViT-0-a0bfe5449f36748e7b5c26cd182b2ad0)
(2)黄原酸酯的热裂
将黄原酸酯加热到l00~200℃即发生热分解生成烯烃。该反应称为Chugaev(秋加叶夫)反应,例如:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image203.jpg?sign=1738987939-qaBYnHE4KnQmY8QctbwiMX2ha45nV01Y-0-06e170a8eed20214b1c4dfe3ff10d911)
反应机理为:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image205.jpg?sign=1738987939-mhkOvbjBRlllO08HB19U4TvpspwkSTuQ-0-ae6f515ca387b060cf913f95f0af5fa5)
四、羧酸衍生物的制备
1.酰卤的制备
酰卤是用羧酸和无机酰卤反应来制备的。
(1)酰氯
酰氯最常用的制备方法是用亚硫酰氯(thionyl chloride)、三氯化磷、五氯化磷与羧酸反应而得。如
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image207.jpg?sign=1738987939-Y3EUry3cY1MxC8Gl7yP93PxHZO72NyhE-0-b1c995ac08df4959908ad3c3b353ec47)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image209.jpg?sign=1738987939-JNKVdsQZT11H2EFESWUdsDAhFoDAUeWs-0-8688cc3e40d8658abe538e035f5ebf0f)
沸点98~102℃ 沸点200℃
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image211.jpg?sign=1738987939-Q0kSDQ4hFHipwpEhIlBrVVlkhfG4bzh9-0-78ca579bf6d79f12d3efab5c2ff768d5)
沸点l96℃ 沸点107℃
常用的试剂是亚硫酰氯,反应条件温和,在室温或稍加热即可反应。
羧酸与亚硫酰氯反应过程如下所示,氯负离子“内返”形成酰氯。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image213.jpg?sign=1738987939-GTEqyemu04kH4teyzWmtGF3JA97PhhMF-0-2b272effbe4c50723cbb1df2455f7366)
(2)酰溴常用三溴化磷(沸点l73℃)为卤化试剂来制备。
2.酸酐和烯酮的制备
(1)酸酐的制备
①用干燥的羧酸钠盐与酰氯反应
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image215.jpg?sign=1738987939-Yy1QWzYIQP9MBDQFmNdRuSCR6DAWlj1V-0-055d2d00160c6b87364074ca46c20c93)
②羧酸失水
羧酸(除甲酸外)均可失水形成酸酐。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image217.jpg?sign=1738987939-icYvd5VSBYXcSIaVkPxWmAEJu2KHnQsk-0-a05227d92533649c231bb8df6b3a7fbb)
苯甲酸酐(苯酐)74%
可制备比乙酸沸点高的酸酐,反应中的乙酸酐实际上是一个去水剂。二元酸通过此法可合成环状酸酐,产物水常用共沸法或真空蒸馏法除去。
五元、六元环状酸酐常用此法制备。例如:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image219.jpg?sign=1738987939-IVg97P0q2pGHCtPoZKj7A0fvjTBaRyOc-0-abe329f6db75e5d4a1c8def67bfcd277)
③芳烃氧化
苯在高温及V2O5催化下氧化为顺丁烯二酸酐,邻二甲苯可氧化为邻苯二甲酸酐。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image221.jpg?sign=1738987939-zSdW4l6s9W157Azq9qK0y0tkGMUDtr2h-0-49bd3a5ee16f15958a6daaaff243a1ba)
邻苯二甲酸酐,75%
④乙酸酐(醋酐)的工业制法
用乙酸与乙烯酮反应来制备:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image223.jpg?sign=1738987939-5tkf5JVaKnixW9EFclXsRVWkscr8nKVo-0-3e4512acabce7ef9d147574a4be4c547)
(2)烯酮的制备
①烯酮一般是用α-溴代酰溴和锌粉共热,通过Elcb消除失去两个溴原子后得到的。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image225.jpg?sign=1738987939-Q8LeSq4SJCkKtYeGFyGsKkqg2CKZkvvG-0-f5b7745727759c1e8c1d19ee40206d25)
②用酰卤在碱的作用下消除卤化氢来制备。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image227.jpg?sign=1738987939-v8CS2lFFWT4Kmoew4fNjoshCVu1u7fxi-0-1f4293e7bc967708bb5287e453234844)
③α-重氮羰基化合物经Wolff重排制备烯酮。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image229.jpg?sign=1738987939-jfDJqsSMUDRoSHYlus26BtgLZDX3mZMW-0-809f0f37d97140df1aa9ed7238c23366)
④在工业上,乙烯酮通过丙酮或乙酸的热裂(pyrolysis)来制备。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image231.jpg?sign=1738987939-EXbBSsXStdSPsjhpLIUhzT3vxFmYX5oG-0-78c81ab3ec6b689acdf7bdeef8745daf)
热裂反应是按自由基机理进行的。由丙酮裂解制备乙烯酮的机理如下所示:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image233.jpg?sign=1738987939-XMFDG4laDjmvWTqnBzM8tbFtXrKrv0Lo-0-78f65f4006f27a7355f4e922c7c52c0b)
3.酯的制备
羧酸与重氮甲烷反应可用来制备羧酸甲酯。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image235.png?sign=1738987939-jwTVGmiE4qZ83b2my2ZVEoGAApzUkuaz-0-b542e5dc3575495eced3f3919c1a9ec1)
反应机理如下:
羧酸与烯、炔的加成也能用来制备酯,例如:
4.酰胺和腈的制备
(1)酰胺的制备
酰胺可以通过腈的控制水解或铵盐的部分失水来制备:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image241.png?sign=1738987939-o7jGeGAR7xnqzHS4tJOpa5494jfBUb3K-0-94fa876edef917fcb6aee2c3d61b1c1c)
(2)腈的制备
①卤代烷与氰化钾(钠)反应制备腈:
RX+NaCNRCN+NaX
②实验室中,酰胺失水制得腈。通常的失水剂是五氧化二磷、三氯氧化磷、亚硫酰氯等。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image249.jpg?sign=1738987939-mmvhrHdr8I2WjQMpnB9OSe0tUn4YDl15-0-ca1ca8d9d4c2ea69dfad6e0da72aed74)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image251.jpg?sign=1738987939-ncH9ZlPiGQGAJMkHc1TBKhxI3t8n8mbq-0-8bdc9c2df300712423c1eedbcaa7bd5c)
五、油脂 蜡 碳酸的衍生物
1.油脂
油脂的水解亦称为皂化作用:
油脂 十个碳以上的羧酸钠盐
(1)脂肪酸
天然油脂水解后的脂肪酸是各种酸的混合物。饱和酸最多的是C12~C18酸,动物脂肪如猪油及牛油中含有大量软脂酸(palmitic acid)及硬脂酸(stearic acid)。奶油中含有丁酸。
油脂中含有的不饱和酸均大于C10,最重要的是十八个碳原子的酸,分布最广的是油酸(oleic acid),它是橄榄油的主要成分。
(2)脂肪酸和脂肪醇的来源
工业上通过分馏脂肪酸甲酯或乙酯的方法可以得到纯度超过90%的各种脂肪酸。
首先使油脂和甲醇或乙醇进行酯交换反应:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image253.jpg?sign=1738987939-Svvhi2j5CghNvApt6vYj0YYRoYIHO1IL-0-41d550f12650e95d1c253098814e08bd)
将生成的甲酯或乙酯和甘油进行分馏,然后水解,这样就得到了相当纯净的脂肪酸。
(3)油脂硬化,干性油
①油脂的硬化(fat hardening):不饱和脂肪酸在镍的催化下,氢化到任何一种饱和程度。因为氢化逐步地提高了熔点,该过程称为油脂的硬化。
②干性油(drying oil):当把含有共轭双键脂肪酸的油脂涂布在平面上和空气接触时,就逐渐变为一层干硬而有弹性的膜,因此这种油脂又称为干性油(drying oil)。
(4)肥皂和合成洗涤剂
高级脂肪酸钠盐结构上一头连接亲水基,一头连接疏水基。
除油机理:
①遇到一滴油后,疏水基部分没入油中,亲水基伸没入水中这样油,将肥皂分子包围起来。
②受机械力的震动和摩擦,大的油珠多数分散成细小的油珠,然后再受肥皂分子的包围而分散,不能彼此结合,只能成为极小的油珠悬浮在水中,于是肥皂就呈乳状液。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image255.jpg?sign=1738987939-AnnLFhLy6yANkRL0v4Ecwd4x4zuvBb1f-0-c2164bc3ced0b2399164ccfeef260c80)
目前国内外大量使用合成洗涤剂,这些合成洗涤剂结构有一个共同点,就是均有一个极性的水溶性基团(water—soluble group)和一个非极性的油溶性(oil—soluble)的烃基(C>12)。
(5)磷脂和生物膜(细胞膜)
在动植物体内含有一类和油脂类似的化合物,称为类脂质。在分子中含有磷的叫磷脂(phosphatide),磷脂多为甘油酯,以脑磷脂(cephalin)及卵磷脂(1ecithin)为最重要,其结构为
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image257.jpg?sign=1738987939-FSoRfV9Af5wCLRrFxzcsCIW0uDIyYPFI-0-72600692d4ecfa96040c32ee2c03173e)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image259.jpg?sign=1738987939-NVFXRAlSCM2mDWoM9rqBhgr1J9O0JZu7-0-539c412d666d691ab950035837a09825)
磷脂酰乙醇胺 α-脑磷脂 磷脂酰胆碱 α-卵磷脂
所有生物膜(biomembrane)几乎完全是由蛋白质(protein)和脂类(主要是磷脂)两大类物质组成。
2.蜡
蜡(wax):化学成分是l6个碳以上的偶数碳原子的羧酸和高级一元醇形成的酯。
蜡多为固体,重要的有下列几种:
蜂蜡,熔点60~62℃ 鲸蜡,熔点41~46℃ 巴西蜡,熔点83~90℃
存在于蜂蜜腹部 存在于鲸鱼头部 存在于巴西棕榈叶中
蜡可用于制蜡纸、防水剂、光泽剂等。
3.碳酸的衍生物
从结构上讲,碳酸是一个双羟基化合物,它的水合物称为原碳酸(ortho-carbonic acid)。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image267.jpg?sign=1738987939-CCqcoiwDJvpFgPIaMleGzLqMPaXuNG5m-0-7ee562915aba2ddbff9791f678d086c6)
碳酸 原碳酸
碳酸含有两个可被取代的羧羟基,可以形成单酰氯、单酰胺、单酯,或形成双酰氯、双酰胺、双酯。
保留一个羟基的碳酸的衍生物是不稳定的,很容易分解放出CO2。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image271.jpg?sign=1738987939-Da4Rh5YgUXGA4Lcsr0J0xUTP6EMKKNFq-0-a18316728957390b7592216662e363aa)
碳酸单乙酯 碳酸单酰胺 碳酸单酰氯
原碳酸含有四个可被取代的羟基,其四氯化合物即是四氯化碳。
(1)光气
碳酸的二酰氯又叫光气(phosgene),有毒。
光气可以由四氯化碳和80%发烟硫酸制备:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image277.png?sign=1738987939-Jcjpx0SqgDUB6p4B9aooc6nN734hJIOo-0-9a105d5b9b1962d98d46755876fc676c)
工业上可以用CO和Cl2在无光下通过活化的碳催化剂制备:
光气在有机合成上是一个重要的试剂,在合成染料中占有重要的位置。
(2)尿素(脲)
尿素(urea)是碳酸的全酰胺,是碳酸的最重要的衍生物。
大量的尿素是用CO2和NH3在压力下制备;
尿素的主要用途是作为肥料。一部分用来制备尿素甲醛树脂,少量的用来制备巴比妥酸(安眠剂):
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image281.jpg?sign=1738987939-wYpVtGsJ2D9rSBjY017KYkTkVxFX1xmX-0-cfba2911955b422765b9db0bb17d8204)
尿素的性质:
①尿素是一元碱,符合于上述的两性离子的结构,和酸形成盐:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image283.jpg?sign=1738987939-crQPLI2XMSOra3FovzjBUZb0PZz65q24-0-9c8999ecd91f11bf8852fe3e64ba85a0)
②尿素和具有一定结构形状的烷烃、醇等能形成结晶化合物。可用于分离某些很难分离的异构体。
③尿素在微微超过于它的熔点之上加热时,分解成氨和氰酸。假若加热不太强烈,有些氰酸和脲缩合,形成二缩脲。硫酸铜和二缩脲反应呈现紫色,可用来鉴定尿素,更可以用来鉴定肽键和蛋白质。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image285.jpg?sign=1738987939-0t5BnoyCQwsbdukMC6v38MXlowXXxDdZ-0-dc18fd9e121678823e03a21456f92b63)
二缩脲
④测定脲:脲在尿素酶的作用下,可以分解成CO2和NH3。分解后放出的氨可用 Nessler(奈斯勒)试剂,通过比色法测定。