![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
第十五章 第一型曲线积分与第一型曲面积分
§1 第一型曲线积分
我们已经知道怎样计算连续可微曲线的弧长(第六章§3).在本节中,将对曲线孤长的概念作更细致的说明,然后讨论第一型曲线积分.
l. a可求长曲线
考查R3中的一条连续的参数曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0192.jpg?sign=1739164443-Rg4LM4ZhLOMZfooye5LpK1PE6mwNMiHk-0-04de64a936084588c7d7e61a1c92a5ce)
如果曲线(1.1)的起点与终点重合,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0193.jpg?sign=1739164443-jvs4sqlNdK4a6T6ZbxEZhtt6nS2FPDhB-0-e38589a45a8f9c6a57f23ffde4b2e71a)
那么我们就说这是一条闭曲线,如果曲线(1.1)没有自交点(即除非是,只要
,就有
,那么我们就说这曲线是简单曲线.参数方程(1.1)用分量表示就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0197.jpg?sign=1739164443-gAjSFb7tZv4EEWYUmnEC6jw0m7BkTp8N-0-e7eea229b807459283b633dfbb6f45e1)
设和
是曲线(1. 1)上的两点,则联结这两点的直线段的长度可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0200.jpg?sign=1739164443-aJ8yRBLnE6GXlwaeV8M7ijQscXJ3bc2Y-0-5b7391790dd71475769eb5d9ea7fcd6d)
也就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0201.jpg?sign=1739164443-8LjiWYKbzfOVI54tKMlaMtzBMkUmHIDG-0-fd8fd734858c39912ddfe8c34b1bad19)
假设γ是一条简单曲线,它的参数方程是(1.1).考查参数区间[α,β]的任意一个分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0202.jpg?sign=1739164443-5Cfwfiet8GAKzYY67f1XyxjiSK3Ckvxi-0-5eb22aaf57e3b0ef387b2957ddd9ae9b)
对于k=1,……,n,将曲线γ上参数为tk-1与tk的点用直线段联结起来,我们得到内接于γ的一条折线.这折线的长度可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0203.jpg?sign=1739164443-BaaocbltAq0oifbXROXVTxUSppRzc46v-0-f626a15dea8a2afdc323cca6b4488458)
定义1 如果
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0204.jpg?sign=1739164443-PpcnbZmPi9CW2DrHDgbk4YpZnKDf3g6E-0-ea64786af8eb164e995edd4cbf2f1e22)
那么我们就说γ是一条可求长曲线,并约定把
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0205.jpg?sign=1739164443-J61zaU7VZAStH0UNXiDMtzGWFfaTc2KJ-0-c196f7d4d8fda8e554fe53e495d46551)
叫做曲线γ的孤长.
定理1 设γ是用参数方程(1.1)表示的一条简单连续曲线,则γ可求长的充分必要条件是存在有穷极限:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0206.jpg?sign=1739164443-iNrRYczUICS7JL84xRmxjWVdyO8wc9I4-0-403cbffe5dcad4c20f735da4852b1d66)
其中
证明 充分性设存在有穷极限
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0208.jpg?sign=1739164443-9A7wm3bbC1mQ0OWuEmjkEhhbYJsS6wwD-0-43a49f33f73c7eba49f28a94dd4c88de)
则对ε=1,可选择δ>0,使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0209.jpg?sign=1739164443-TlWCODshkGSOVlnRP2J4O6dmvLge446z-0-a1fdf5fd689a10c5e713e8d369566017)
现在设π是区间的任意一个分割.我们可以用增加分点的办法将进一步细分为π',使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0210.jpg?sign=1739164443-MqGD6I1RXe8ixmOSDnUrGS1C9L1EJVbL-0-df4cc355fb1c97b09b8fa41dcf5bfea6)
于是就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0211.jpg?sign=1739164443-PCjd0DMRdiBa2MeNcpgX5wXHy67OICFl-0-a9659a96b419b1b96b70a957f4c46fe9)
这证明了
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0212.jpg?sign=1739164443-70izlxUlT39vcPFm0CzZM5zCNnFDbY4i-0-34a8abf52b6bc161e2f1949ba3719801)
必要性如果
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0213.jpg?sign=1739164443-Qpxj0G30te6SpJWqF8adA4nVR9eZeORb-0-d2c5eeb8e890b57d5d3d08e66915347d)
那么对任何ε>0,存在[α,β]的分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0214.jpg?sign=1739164443-IhzZpf3icbsWwLr9ECfRobBm1Sj9jkkX-0-d872556688f50899ec06bcc9487479af)
使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0215.jpg?sign=1739164443-22gEKICoqJKHYlarYdYcKoPXLVrFwj96-0-497c79b102cba24133367ac753afa6a5)
由于函数r(t)=(x(t),y(t),z(t))在闭区间[α,β]一致连续,存在δ,0<δ<|π0|,使得只要
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0216.jpg?sign=1739164443-o26WUQqVktcqirav4aVQSrWr6LbARHWp-0-403584a7a3ba5849ab752f2489e438b6)
就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0217.jpg?sign=1739164443-Hz8MblacWwJbhixgx39AwkHsZuRugAwn-0-8fcdb15f662ef0662f1b6504c5394672)
(这里m是分割π0在(α,β)内的分界点的数目).现在设π是[α,β]任意一个分割,满足这样的条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0218.jpg?sign=1739164443-texZTwsGKJI9bmxVoLkTol5fLvLJPPYm-0-4e7f595408056f121edc751e79bd5693)
将π0和π的分点合在一起,得到[α,β]的一个分割π1,显然有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0219.jpg?sign=1739164443-kXjmaexCbAwQc5FR48RUqkMlKvH4DEmK-0-5157160bcd158fdb8f8a765ab0b26ae8)
下面来证明
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0220.jpg?sign=1739164443-DMeGuTqr6f8AXowvdmFlON96o0WMVbUe-0-8399a6db63626196c5aaf99e731ebbf7)
为书写简单,我们引入记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0221.jpg?sign=1739164443-QvWUwKEjJ4NtuP7xwQLkMWJnYmGmQyF8-0-2130476faaf7b8ef0dd5c07faa629b66)
和式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0222.jpg?sign=1739164443-NA4iocJoL7sseO8WiF3SVIUQCJCw2HbZ-0-121739155d133be23f8291a6a1a0a46e)
可以拆成两部分:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0223.jpg?sign=1739164443-B6AerDOZIVi7yosjLG0gwDi10r8lrFtP-0-c54e41641f3fa8716633cbca6d88e0d5)
其中第一部分所涉及的参数区间[tj-1,tj]内部不含有π0的分点;第二部分所涉及的参数区间内部含有π0的分点(后一类区间总数不超过m个).和数λ(γ,π1)与和数λ(γ,π)相比较,差别只是第二部分和数中的每一项ψ(tk-1,tk)被改变为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0224.jpg?sign=1739164443-0oZJBCm8nYbW0524uhuQHw9gRH6Nafvk-0-242ad4fb5d95be2a034c830b67010fbe)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0225.jpg?sign=1739164443-e6YQycPAr3fMc1P4NaYyZKDcEhlQckt2-0-225fb2210bb9a3a88b26c6cab28bd295)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0226.jpg?sign=1739164443-FnyCWDbQt9Xvi5HhnhedeUViyVaFK2yd-0-4de263019ac88074ba8fb562e2451ea6)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0227.jpg?sign=1739164443-Hfc1izKaWniHfUqgXUNUfBcLPAKV5x0p-0-4cec22b80bd36dbf3ac05f05e676c480)
我们证明了
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0228.jpg?sign=1739164443-QlS2y7eHaYcKIr4FGCFMr1a66udA4Qz6-0-7aaca5d9143b49b3586d1e6b04004342)
推论设γ:r=r(t),t∈[α,β],是一条连续可微(或分段连续可微)的参数曲线,则γ是可求长的,并且
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0229.jpg?sign=1739164443-pi4cILjQo7vB8ZgP1Uzo7dIhvX3LXu6p-0-f90ccb54fe8d856726073d33b911bc83)
l. b第一型曲线积分
设有一段质地不均匀的直金属线L放置在0 X轴上,所占的位置是闭区间[a, b].设这金属线在点x处的线密度等于ρ(x)[1].我们来求金属线L的质量m.这是一道典型的定积分应用题.利用微元法,很容易写出计算公式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0231.jpg?sign=1739164443-Natp7mMZyN6ZvBI0JjxysmITwarlFAji-0-314770607668dde5aaff447364bfd2d5)
再来考虑一个类似的问题:如果L不是直金属线,而是一段弯曲的金属线,那么L的质量又该怎样计算?为了解答这问题,我们用一串分点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0232.jpg?sign=1739164443-Xw14SkhFAqlsjVzlQPqhxMGQzo7MIKAL-0-253d3d5efbd4ad2b1ae01592db0efa72)
把L分成n小段(这里A和B是L的两端点).在Pj-1到Pj这一小段曲线弧上任意选取一点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0233.jpg?sign=1739164443-cM3puD9WRnWV46Ddnm632tuXo301O319-0-142e188dd4f3b60757348a43b7626ad2)
并把这小段曲线弧的长度记为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0234.jpg?sign=1739164443-r6rWbMMcJSSIDY9MGVaThBSTixtKPfeH-0-50d815a69a876676e5b427472783aa01)
于是,从Pj-1到Pj这一小段金属线的质量可以近似地表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0235.jpg?sign=1739164443-NDmkySAce5TEhvZjed3tUyqdIvvMMeHy-0-75ff76497abd5c901ac61e8ab113ee50)
整段金属线L的总质量可以近似地表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0236.jpg?sign=1739164443-0TGX76qOOK4iN9KQGrZx2y8BVV3nyc6i-0-93e6260820d5b54f06c1b2b1d4c5788f)
如果所分弧段的最大长度趋于0:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0237.jpg?sign=1739164443-qGJ5BJyMhbYoO4JTRpP02GQJt1zIxcsC-0-c63c69d2d1df91a2355cf0f30fb85040)
那么(1.2)式的极限就应该是所求的质量:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0238.jpg?sign=1739164443-sqSouRZpGxGULpOE93familO2Qr14wt7-0-8c66df4cde766b4428c2863545155fce)
这里的“分割——近似——求和——求极限”的手续,与定积分的情形十分类似,但却是沿着一条曲线实施的.由此可以引出第一型曲线积分的一般定义.
定义 2设L是R3中的一条可求长曲线,函数f(x, y,在L上有定义.我们用依次排列的分点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0239.jpg?sign=1739164443-eL8QQqhq2IvHDqBfK710wevOQFQKgNxS-0-9284c6aeaf4a6bbb1aaf3104dae0a3e7)
把L分成n段(A和B是L的端点,对于闭曲线的情形认为A=B),约定把从Pj-1到Pj这一小段的曲线弧长记为Δsj,并记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0240.jpg?sign=1739164443-QWbz34K79ZsyANOiVqzkvmjYUTXF8M6r-0-3c3aba87dfef919c2ac95dea895771e4)
在弧段Pj-1Pj上任意选取点Qj(j=1,2,……,n),然后作和数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0241.jpg?sign=1739164443-awAjrP8e10uTqkDuxZovruqA4T8psKck-0-3151a767ed41313e05eb01afe56e0bab)
如果当d→0时和数(1.3)收敛于有穷极限,那么我们就把这极限叫做函数f沿曲线L的第一型曲线积分,记为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0242.jpg?sign=1739164443-dqcBXxMBW0Gn6dxxblpK1fWU9aN77Y5K-0-b7da00ea736ecdfae3587e5f8a770c5a)
注记 我们把这种对弧长的积分叫做“第一型”曲线积分,是为了与以后将要学习的另一种曲线积分相区别.
读者容易看出:与定积分的情形类似,作为和数的极限的第一型曲线积分,具有线性、可加性等性质.
如果以弧长s作为参数把曲线L的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0243.jpg?sign=1739164443-1FHAEURGv9vXDmKAxg795gAUAQb4r4Z1-0-c291fb3c45daffef6ef0aa8e1348a88a)
那么根据定义立即就可以把第一型曲线积分表示为定积分
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0244.jpg?sign=1739164443-LG2NlSgrrLIznAxFr7eQ6SPAczT17C89-0-6447ffa755fc798d9b74502b78a27896)
非弧长参数的连续可微曲线(或者分段连续可微曲线),可以通过变元替换化成以弧长为参数的情形.我们有以下的计算公式:
定理2 设L:r=r(t),t∈[α,β]是一条连续可微的参数曲线,满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0245.jpg?sign=1739164443-fvb3tiahrByAfWaarhjQndtba59QhWPk-0-17d2c07821dc747ff242e4d1cbb97372)
并设函数f在L上连续.则f沿着L的第一型曲线积分存在,并且这积分可按下式计算:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0246.jpg?sign=1739164443-YJIotXi6zbKIxeG8oSzhPF6tfUqfvYU4-0-1088f687d911e07991fbeff05c741c00)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0247.jpg?sign=1739164443-lrsC2nfXrK7H9eJap9n1zZT2Wlqmo32W-0-3ee697ac3235d91330723264d2bf1d62)
证明 在所给的条件下,曲线L是可求长的,其弧长表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0248.jpg?sign=1739164443-ZgZosw9kXtOVAFS4lzzj0UTqArbnOXZH-0-d94b894f8f72a6f1b56c434d66f4acc3)
并且
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0249.jpg?sign=1739164443-5zNT0LJBptXXx8xBO0v7FiBgLM8bLuEl-0-634a28575eb363f9c2de6a5324dac8a0)
根据反函数定理,参数t是弧长s的连续可微函数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0250.jpg?sign=1739164443-Mw2MD9nqb8CmTDyUDYR4Q7gZmD4MhJ55-0-7cab4cfc6fd5318e157e42d9c88f5e1b)
于是,我们可以用弧长s作为参数,将曲线L的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0251.jpg?sign=1739164443-nPx1i3O351AjWTr8bEhH5MHRuIOieQ5m-0-2ddab4ee6972ab0389cedfdba80976b4)
函数f沿L的第一型曲线积分表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0252.jpg?sign=1739164443-pKgn3xXYlPad5yXGIZCybxfy6ZnLd4xb-0-c35cb1d2724b046e297bf9f7f7eb3bc6)
在上式中作变元替换
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0253.jpg?sign=1739164443-ZF9eJD7xnJUG931fP89zjoxHrbUqACaG-0-4298e21fefb54ad487e6159aa7e09abf)
就得到定理中的计算公式.□