
会员
人工智能核心:神经网络(青少科普版)
齐勇刚等编著更新时间:2023-08-10 18:09:44
最新章节:参考文献开会员,本书免费读 >
本书主要讲解了图像和文本在计算机中的表达和计算方法、神经网络的基本原理,并以圈叉棋为例讲解了计算机在图像分类问题上挑战人类的卷积神经网络技术,以单词拼写为例讲解了处理文本和语音的循环神经网络技术。读者只需要具备基础的加减乘除计算能力,就可以不借助计算机而掌握书中的所有技术和原理,并尝试实现书中的所有实例。可以说,这本书的真正目的是实现作者的期望:人人都会人工智能!
品牌:清华大学
上架时间:2021-06-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
齐勇刚等编著
主页
同类热门书
最新上架
- 会员
ChatGPT漫谈
本书深度探讨了构建和训练ChatGPT模型涉及的核心技术,以及ChatGPT在各种实际应用中的作用。全书精心划分为三部分,其中第1章为第1部分,第2章为第2部分,第3章和第4章为第3部分。首先,详细阐述了机器学习的历史演变与各种学习范式,同时也揭示了在人工智能生成内容(AIGC)领域下,图像处理和自然语言处理技术的历史发展趋势;接下来,对ChatGPT的运行机制和关键算法进行深度解析,包括大规模模计算机10.8万字 - 会员
人工智能编程实践:Python编程5级
青少年人工智能编程水平测试涵盖从数学逻辑到计算思维、从拖曳程序模块到程序编写、从数学建模到算法设计等多学科知识,能够对学生的多学科知识综合运用能力做出评价;能够通过设计的具体解决方案,对学生的计算思维、创造性思维等能力做出评价;在具体的解决方案中,能够通过设计算法模型和实现算法,对学生掌握和运用编程的能力做出评价。本书将生活中的一些案例和程序算法相结合,深入浅出地为学生讲解不同进制之间的转换、函数计算机3.9万字 - 会员
当我点击时,算法在想什么?
我们生活在一个由算法构筑的世界:这些基于数据的算法不仅掌控着社会的运转、筛选着我们的网络见闻,还构成了自动驾驶、智能家居、前沿医疗、智慧城市乃至元宇宙发展的根本。它们是人类步入智能化新纪元的关键驱动力。随着我们对数字技术的依赖日益加深,数学家和数据研究者得以透过它们窥探我们的日常生活。他们通过收集我们的购物记录、消费倾向、兴趣爱好和旅行路径等数据,试图解码我们的日常行为模式。但是,这些数据驱动的分计算机15.2万字 具身智能:人工智能的下一个浪潮
自人工智能(AI)的概念诞生之日起,科学家们就热衷于探讨它的发展路径。第一阶段毫无疑问是计算智能,经过半个多世纪,AI在运算能力和记忆方面早已超越人类。第二阶段,是感知智能,让机器可以看得懂听得懂这个世界。科学界认为,尚未到来的第三阶段,是认知智能,甚至提到一个词:认知时代。我们来到大模型时代或者是生成式人工智能时代了吗?如果我们此时此刻正身处这个时代,那上一个是什么时代?有人说,大规模预训练已经计算机11.3万字- 会员
机器学习实战(视频教学版)
《机器学习实战:视频教学版》基于Python语言详细讲解机器学习算法及其应用,用于读者快速入门机器学习。《机器学习实战:视频教学版》共分12章,内容包括机器学习概述、Python数据处理基础、Python常用机器学习库、线性回归及应用、分类算法及应用、数据降维及应用、聚类算法及应用、关联规则挖掘算法及应用、协同过滤算法及应用,最后通过3个综合实战项目(包括新闻内容分类实战、泰坦尼克号获救预测实战、计算机10.1万字 - 会员
ChatGLM3大模型本地化部署、应用开发与微调
《ChatGLM3大模型本地化部署、应用开发与微调》作为《PyTorch2.0深度学习从零开始学》的姊妹篇,专注于大模型的本地化部署、应用开发以及微调等。《ChatGLM3大模型本地化部署、应用开发与微调》不仅系统地阐述了深度学习大模型的核心理论,更注重实践应用,通过丰富的案例和场景,引导读者从理论走向实践,真正领悟和掌握大模型本地化应用的精髓。全书共分13章,全方位、多角度地展示了大模型本地化计算机13万字 - 会员
机器学习(第2版)
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容计算机30.2万字 - 会员
机器学习的算法分析和实践
本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字 - 会员
机器学习中的统计思维(Python实现)
机器学习是人工智能的核心,而统计思维则是机器学习方法的核心:从随机性中寻找规律性。例如,利用损失最小化思想制定学习策略,采用概率最大化思想估计模型参数,利用方差对不确定性的捕捉构造k维树,采用贝叶斯公式构建分类决策模型,等等。只有树立正确的统计思维,才能准确高效地运用机器学习方法开展数据处理与分析。本书以统计思维的视角,揭示监督学习中回归和分类模型的核心思想,帮助读者构建理论体系。计算机18万字